Files
LBPM/example/DiscPack/DiscPack.ipynb
2021-06-22 09:01:14 -04:00

178 lines
26 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import numpy as np\n",
"import matplotlib.pylab as plt\n"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"473.53100883248396"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Radius = 36\n",
"random.seed(23)\n",
"random.uniform(0,512)"
]
},
{
"cell_type": "code",
"execution_count": 203,
"metadata": {},
"outputs": [],
"source": [
"cx = [312, 70, 173, 250, 100, 30, 70, 210, 200, 112, 332, 346, 452, 431, 500, 480]\n",
"cy = [327, 64, 112, 20, 350, 450, 210, 438, 261, 500, 172, 455, 349, 60, 210, 460]\n",
"radius = [46, 42, 49, 48, 43, 48, 64, 56, 46, 30, 86, 62, 52, 38, 59, 41]\n",
"#for i in range(1,30):\n",
"# cx.append(random.uniform(0,512))\n",
"# cy.append(random.uniform(0,512))\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 244,
"metadata": {},
"outputs": [],
"source": [
"Lid = np.ones((512,512),dtype=np.uint8)\n",
"ID = np.ones((512,512),dtype=np.uint8)\n",
"for i in range(len(radius)):\n",
" Cx = cx[i]\n",
" Cy = cy[i]\n",
" Radius = radius[i]\n",
" for i in range(np.int(Cx-Radius),np.int(Cx+Radius)):\n",
" for j in range(np.int(Cy-Radius),np.int(Cy+Radius)):\n",
" if i>1 and i<512 and j>1 and j<512:\n",
" if ((i-Cx)*(i-Cx) + (j-Cy)*(j-Cy) < Radius*Radius):\n",
" ID[i,j] = 0\n",
" \n",
"for i in range(512):\n",
" ID[1,i] = 0\n",
" ID[2,i] = 0\n",
" ID[510,i] = 0\n",
" ID[511,i] = 0"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfbAldX3n8ffH4UHChTAIjuMMcdBMiGCtTu6IZtlsZgIKGgzsGrNjLTqpYE3VFkatSEWI5VNcdjU1umsKqJVyNGxQbyaoC2GLIMG5a9yVIHdHIo9hFAKXGRkfZkquazDgd//ovkzP4T6ch374dZ/Pq+rUOafPOd3f/vXpz+nz69N9FBGYmVm3PKfpAszMrHwOdzOzDnK4m5l1kMPdzKyDHO5mZh3kcDcz6yCHu1lJJP2upK8t8tgvSJqTtKLuumw8OdzNcpKmJb2tinFHxCMRMRERT1cxfrNeDnczsw5yuFtpJL1H0mOSnpD0gKSz8+HPkXSZpG9L+oGknZJOLLzurZL+MX/sfZIelnRO/tgHJf2lpOvy8X5L0i9JulzSfkmPSnptYVw/L2mHpH15Lf9xvitkvttE0nZJByQ9JOl1+WNXAL8GXJl3n1yZD/9lSbdK+mE+T79TmNbzJN0o6UeS7gBeskTbrJMUko7I70/ntf2ffHp/lY/vs/n4viFpXeH1n8jn9UeSZiT9WuGxYyRdm8/TfZL+UNJs4fEXSvqCpO/l8/yOIRextYjD3Uoh6TTg7cArI+I44Fzg4fzhdwAXAr8OvBA4AFyVv+504Grg3wOrgZ8H1vSM/g3AnwMrgd3ALWTv3TXAHwOfLDz3WuAp4BeBDcBrgWJXy6uAB4CTgD8BdkhSRLwX+Fvg7Xn3ydslHQvcCnwOeD7wZuBqSWfk47oK+Ke87t/LL4PYArwln4+XAF8HPgOcCNwHfKDw3G8Ar8gf+xzwl5Kemz/2AWAd8GLgNcBF8y+S9Bzgr4C78umcDbxL0rkD1mptExG++DLyhSxM9wPnAEf2PHYfcHbh/mrgn4EjgPcDny889nPAT4Fz8vsfBG4tPP4GYA5Ykd8/DgjgBGAV8CRwTOH5bwZ25bd/F9jTM60AXpDfnwbeVnj83wF/2zMvnyQL0xX5PPxy4bH/BHxtkfZZl0/riMK03lt4/GPAzT3z+c0l2vsA8PL89neAcwuPvQ2YzW+/Cnik57WXA59p+j3jS7WXI/r9EDBbSkTskfQusjA+Q9ItwB9ExF7gRcCXJP2s8JKnycL4hcCjhfH8P0k/6Bn944XbPwG+H4d2TP4kv57Ix3UksE/S/POfUxw/8N2eac2/diEvAl4l6WBh2BFk3yJOzm8Xx/2Pi4xnMb3z1Xv/mbokvZsstF9I9iFxPNm3D+hpw57bLwJe2DMPK8i+pViHOdytNBHxOeBzko4n28L9KFm3w6PA70XE/+59jaR9wGmF+8cAzxuyhEfJttxPioinhnh97ylSHwX+V0S8pveJeT/+U8ApwP354F8YYprLyvvX30PWpXJPRPxM0gFg/hNsH7AWuDe/f0rh5Y8CD0XE+ipqs3S5z91KIek0Sb8h6WiyfuifkG2dA/w34ApJL8qfe7KkC/LHrgfeIOlfSjoK+BCHQmsgEbEP+DLwMUnH5ztyXyLp1/scxeNk/dbzbgJ+SdJbJB2ZX14p6aX5N4cvAh+U9HP5voOtw9Tdh+PIPki+Bxwh6f1kW+7zdgKXS1opaQ3Zvo95dwA/ynd2HyNphaSXSXplRbVaIhzuVpajgY8A3yfr+ng+8Ef5Y58AbgS+LOkJ4HayvmAi4h7g94Epsi3QJ8j67p8cso63AkeRbcUeIPvwWN3naz8B/Hb+q5M/jYgnyHbIbgH25vP10XxeIQvRiXz4n5HtDK3CLcDNwD+Qdf38E4d3vfwxMAs8BPwN2Tw/CZB/CL2BbGfsQ2TL51NkO66twxThP+uwdEiaAA4C6yPioabraSNJ/wHYEhH9fmOxDvKWuzVO0hvyro1jge3Atzj0M0pbhqTVks7Ku6FOA94NfKnpuqxZDndLwQVk3R57gfVkW53+Stm/o8h2YD8BfAW4gezYARtj7pYxM+sgb7mbmXVQEr9zP+mkk2LdunUjjePHP/4xxx57bDkFVWjf3r18d9++pstY1gtWr25FndCeWttSJ7Sn1sXq3DA52UA1S6sio2ZmZr4fEScv9FgS4b5u3TruvPPOkcYxPT3Npk2byimoQv/lYx/jfZde2nQZy7r03e9uRZ3QnlrbUie0p9bF6hw1T6pQRUZJWvSo6L7CXdLDZDtrngaeioiNys7q9xdk58x4GPidiDiQP/9y4OL8+e+IiFtGqL9TNkxOMteC/RzT09OV1DmhoY5PSs4wbVNVm1ZhmFrrWLa9NbWpTes2SJ/75oh4RURszO9fBtyWH9Z8W35//ix/W4AzgPPIzqLnf58x66gJqbYP7a5sHNRhlB2qF5CdXpX8+sLC8KmIeDI/CGUPcOYI0zEzDoXoUhezeX39FFLSQ2SHcgfwyYi4RtLBiDih8JwDEbEy/5OD2yPiunz4DrJTmV7fM85twDaAVatWTU5NTY00I3Nzc0xMLHZyv3SMe527Z2ZKH+eatWt5bHZ2+SeWaJgddsO26bBtNspOxX5rrWJ59mN+3tqyPkE1tW7evHmm0JtymH53qJ4VEXslPR+4VdL9Szx3oc2HZ32CRMQ1wDUAGzdujFF3NLRlh+q413n+5s2lj/PD27fXvvNv2D73ftu07K3wQevtt9Yqlme/5iJasz5B/et+X90y+Tm5iYj9ZIc1nwk8Lmk1ZIc/k53sCbITGBVPObqW7MhDM1tGVd0rVYzX3UBpWzbcJR0r6bj522Rnybub7Cx/86c43Up2yDP58C2SjpZ0Ktnh5HeUXbhZ19QRlg7k8dHPlvsq4GuS7iIL6f8ZEX9NdnrX10h6kOx/Gz8Cz5zCdSfZKVf/Grik8K85Ztaj7p2hZUwvhQ+JFGpI2bJ97hHxHeDlCwz/Adk/wyz0miuAK0auzixBZf6u2gFlVfG5Zcwa0nSw++eT3eZwt1r5aEKzejjczRqQ0hZzSrVYeRzuZgMo45tHimGaYk02Goe71c5dM2bVc7ib1SjlLeSUa7PBOdytEW3cem9jzTa+HO5mfSgj2Js6ydYgvPXeHUn8E5ONbqmVMtUtzrkIh4lZRbzl3lKDnMc75fN9p/rBU9TVX8iMIoXllkINKXO4t8yoIZ1iyKe8kqZcm9lSHO4tUmYopxbwlo5+3xv+4Eubw70lqjrHdypSDIoUa7KMl83yHO4tUGUIO+AXllItKWuinbxs+uNwT9y4/YHDXESjK2/T02+jOtvLy6Z/DveE1f0HDinxFmG71NF2Xj6Dcbhbsupamb21Xo4q29DLZ3A+iMmeMSEltxIV6yn720Vq89oF821a5rLychqOwz1RqXWTpKCs4HBYVK+Mo4+9nEbjcLfDpLj13mvQrfnU56erRgl4L7PROdwT5K32/s1FMD097TAo0XybljUua4Z3qJrVwCFndXO4m5l1kMPdrCYbJiebLmFZ/obRHQ53M7MOcribmXWQw92sRil3e6Rcmw3O4W5mDvYOcrgnyCtat3n5Wh0c7nYYB089UmrnlGqx8vgI1USVcW6OVPmcI5kUlnFX2tKezVvu9oyqVvT5P+Uu68+5yx5fk5r+YxLrLoe7Vaau8N09M9PqkK/7fPI+f/14cLdMwur82l7Wyt5kyM5P28G1OLfN+Oh7y13SCkm7Jd2U3z9R0q2SHsyvVxaee7mkPZIekHRuFYWPi7b8fVlKXSQp1TKI+S3qKpZ53VvrvV1n/V6sPIN0y7wTuK9w/zLgtohYD9yW30fS6cAW4AzgPOBqSSvKKXc8pf73ZamulG0OjLLCuKlQb+r1dkhf4S5pLfCbwKcKgy8Ars1vXwtcWBg+FRFPRsRDwB7gzHLKHV+pfp1uw4rYhhoXM2w4ty3Uqx7fOFL08QaQdD3wn4HjgEsj4nxJByPihMJzDkTESklXArdHxHX58B3AzRFxfc84twHbAFatWjU5NTU10ozMzc0xMTEx0jjqMGqdu2dmSqljuTMULldnWXWUYc3atTw2O7vs85o+K2Nb3qPQX611vwcWWn5da9NBbd68eSYiNi702LI7VCWdD+yPiBlJm/qY3kIft8/6BImIa4BrADZu3BibNvUz6sVNT08z6jjqMGqd86+t+u/LlqoztS2qD2/fzvsuvbTv5zf1Lagt71FYvtam3gO9y65LbVq2fn4tcxbwW5JeDzwXOF7SdcDjklZHxD5Jq4H9+fNngVMKr18L7C2zaBvuz6K73L8+iDb8T2zKmv5FlJddf5btc4+IyyNibUSsI9tR+pWIuAi4EdiaP20rcEN++0Zgi6SjJZ0KrAfuKL1yAw7/hcVyl1F1IdjndWle6pJKP3gqdaRulN+5fwTYKeli4BHgTQARcY+kncC9wFPAJRHx9MiVWqO6uDJ5K7B/XVz+XTfQEaoRMR0R5+e3fxARZ0fE+vz6h4XnXRERL4mI0yLi5rKLtnp1ecXu8rx1nZfd0nz6AVuSV6DxlnoXSNtPPVElh7stalxWmnGZTxsvDndbUEq/Y6+DA/7Z2tQmbaq1Lg53s5wD4pA2frh7+R3O4W5m1kEOd3uWcd4CGud5n9fmNmhz7WVzuNthvHJY2/k9nHG4m/VwOFgXONztGQ4183ugOxzuZgtwyFnbOdzNzDrI4W6At1TN74GuGeWskGadVvdZI5cLV5/B0gbhcDdr0CBby8XnOuhtOQ5389fxmpXR3vPjcMjbYtznbraEsj/4Uh+fdYfD3awGE1JlJ+NK/Zzr1gyH+5hzKFSvrjb2srQih7tZheoOXAe8zXO4m1WkqaB1wBs43M06yQFvDnezCjhcrWkOd7OSpRLsqdRhzXC4m5l1kMPdrMMG2Xr30a7d4nA3K5G7QiwVDncze4a33rvD4W5m1kEOd7OSpNolk2pdVfG3j4zDfcx5RbBebX5PtLn2sjnczcw6yOFutoRx3RLcMDnZdAkDG9dltRiHu5ktqE1h2aZa67JsuEt6rqQ7JN0l6R5JH8qHnyjpVkkP5tcrC6+5XNIeSQ9IOrfKGbDRecUw655+ttyfBH4jIl4OvAI4T9KrgcuA2yJiPXBbfh9JpwNbgDOA84CrJa2oonizKvlDrx1t0IYam7BsuEdmLr97ZH4J4ALg2nz4tcCF+e0LgKmIeDIiHgL2AGeWWrWVziuILSbl90Yb9w3URdHHgsu3vGeAXwSuioj3SDoYEScUnnMgIlZKuhK4PSKuy4fvAG6OiOt7xrkN2AawatWqyampqZFmZG5ujomJiZHGUYeU6yz+x+eatWt5bHa2wWr6V1WtwwTHUv+T2lSbDjMfC71Pq/oP2GFtmJxMen3qVUWtmzdvnomIjQs+GBF9X4ATgF3Ay4CDPY8dyK+vAi4qDN8BvHGp8U5OTsaodu3aNfI46pByncfCM5ePb99+2P2UL1XUWkYb1lFnVfOy2Pu06WXdO08pr0+9qqgVuDMWydUjBvmUiIiDkqbJ+tIfl7Q6IvZJWg3sz582C5xSeNlaYO8g0xkHgx41mPJXYxsfcxGNHvHq9aB//fxa5mRJJ+S3jwHOAe4HbgS25k/bCtyQ374R2CLpaEmnAuuBO8ouvK12z8wMtXJMSM9cquIVJzNKO6TWhlXUMxfRyHym1rap62fLfTVwbd7v/hxgZ0TcJOnrwE5JFwOPAG8CiIh7JO0E7gWeAi6JiKerKX88zQd8VSvuuJ2LxIYz//6r+v3iUB/OsuEeEX8PbFhg+A+Asxd5zRXAFSNXZ0uakPzGL1kZ7ZnKB2Rd742qQt7v7dH4CNWWq6KrxivV6MaxDee7a0bt1mqq26drBtqhatZlXQqUpuel6embt9w7o+yt93E7OKSq/RdNcLAaONw7pewumnEJiSrns+42HJdlZstzuNuSHBajq3vHphk43G3MdSV4HezWy+HeQVX8eqaL4VH3PG2YnCx9ml1dNjY6h3tHpfA765Q1GYhlBLJD3Zbjn0Ja3+o6IrFqqYRibx3LtWsqdVs7ONw7rKojWFM5AnNQqYdj6vUtpp/3Qlvnrc0c7jaUtga8lWPQZd/7fId99RzuNrS2dNM4SMpR5nIujsvLpxreoWojS3Xl9E7H8lT5AZ76xkFbOdytFKkFaUq1tFnV/yFQnI6Vy90yVqpiqNa9wjrQy1X38qvyfwrGkbfcrTJ1bc1XcXDQOJuQGv0zbG/Fl8PhbpWrIuR93u9uc8CPzt0yVhsHcfpSClX/09hoHO5mPQYJuC6FT0rBPs8BPzyHu1lumHDryk7AFIPdRuNwt7FWVqj5oJzqeOt9ON6hamOrqq3Vtm0Ft6HeNtSYGoe7jaWqw6Kug39G1YYabTgO9w7zV9lnqzt0HZ7lcVsOxuFuNqYclt3mcO8ob7U/W1Nh5hC1JjjcO8jB/mxNB2zT07fx43A3s9bwh2T/HO4dU9ZW++6ZmWd2Pi53SV0qNTZ5Mq5eqbSJVcfh3iGjBvuwgd2moG+a28jq4nDviFGCvcxgTi28UqvHrC4+/UAHDBvsVR+h6R27Zs3xlnvLpRbsdU/DzBbmcG+xlIO9OC3/vvxwqdZl3bJsuEs6RdIuSfdJukfSO/PhJ0q6VdKD+fXKwmsul7RH0gOSzq1yBsbNqP9A5KA1Gw/9bLk/Bbw7Il4KvBq4RNLpwGXAbRGxHrgtv0/+2BbgDOA84GpJK6oovo2G/b/PMv5SzgFrNj6W3aEaEfuAffntJyTdB6wBLgA25U+7FpgG3pMPn4qIJ4GHJO0BzgS+XnbxbTaOOxt9Xm6z+igGWNkkrQO+CrwMeCQiTig8diAiVkq6Erg9Iq7Lh+8Abo6I63vGtQ3YBrBq1arJqampkWZkbm6OiYmJkcZRh6bqHPQAmjVr1/LY7GwltWyYnCx1fIu1aUoHDcHhbVp2GwxjqfapcvmPqth2bVnvoZpaN2/ePBMRGxd8MCL6ugATwAzwb/P7B3seP5BfXwVcVBi+A3jjUuOenJyMUe3atWvkcdShiTqPhYEvH9++fajX9XMp22JtWlX9w16KbZqCppZ/me+ftqz3EdXUCtwZi+RqX7+WkXQk8AXgsxHxxXzw45JW54+vBvbnw2eBUwovXwvs7Wc6Vr4U+9lTrMnawd16/evn1zIi2/q+LyI+XnjoRmBrfnsrcENh+BZJR0s6FVgP3FFeydYFDnizavVzhOpZwFuAb0n6Zj7sj4CPADslXQw8ArwJICLukbQTuJfslzaXRMTTpVdutoy5iCQ/RLz1aXXo59cyXwMWW0POXuQ1VwBXjFCXmVUs1Q8/K4ePUO0wr7jWJf7GMxiHu3WaA2Fpbp/ucrhbY8bxm0WKYZpiTb3aUGNqHO5mljQH+3Ac7tZ5qYRDCkelLiaVNrLyONxtLDQdXk1Pvx8p1phiTW3hcDezZ6QUpinV0kYOdxsbTYWFQ2pwbrPROdxtrJRxXvxBp9c2cxGN7R+oe/l0mcPdrCJtD6m66297e6Wmn3PLmFWiyZV5ftpV/Na+SyFVZTv1TsPK5S33DvNKs7wyuwG63KVQ1bx1tb1S4C13M0bfQh2XkCprS35c2qtJDnezAodOf9xO6XO3jDXC4WBWLYd7xzlEzcaTw30MpBbwqdVj1kUOd6uVg92sHg73MeFQNRsvDvcx0nTANz39NpuQBr50Ue887p6ZGYv5HobDfcz45FntMkpgdSnsBpmXrszzqBzuVjkH++DKDOa2h13b62+Kw30M1XWYfB3TWeyreZu/qldRb1vboW01p8RHqI6xuYjKVp4qQ32YmouvSfmbRNVhNiElPf/zHOqjc7iPubLP+ldVcJS5ss+PK7WQqyvQ2hLwNhp3yxhwqAtlmK6UYV/Xjyq/mqfUbVN3DSnM82JSrq1NvOVuC9owOdno1l1TYdfEPDvMDnFblMdb7pacJlfwcdqCdpB2m8PdkpFSF0kKddRhXOZzHDncLQkOGbNyOdytcakGe9Vb8KnMdyp1WLkc7taoNgRLG2o06+Vfy3REvwHk3zebjYdlt9wlfVrSfkl3F4adKOlWSQ/m1ysLj10uaY+kBySdW1XhNtzvtMf5t92jKLvWNs27tVM/3TJ/BpzXM+wy4LaIWA/clt9H0unAFuCM/DVXS1pRWrUGlNcX3GTItzHc2lizja9lwz0ivgr8sGfwBcC1+e1rgQsLw6ci4smIeAjYA5xZUq1GdSeVMrNuUfTRBytpHXBTRLwsv38wIk4oPH4gIlZKuhK4PSKuy4fvAG6OiOsXGOc2YBvAqlWrJqempkaakbm5OSYmJkYaRx2GrXP3zEwF1Rxuw+TkM7erbM+y52XN2rU8Njtb6jiXUmynQRTbtI7lOYjeeWpqfRq0XRZb9sMuoypV0aabN2+eiYiNCz4YEctegHXA3YX7B3seP5BfXwVcVBi+A3jjcuOfnJyMUe3atWvkcdRh2DqPhVouo9bZxHx8fPv22tqn2EaDKrZpnfUOM09Nrk9lLPsUVdGmwJ2xSK4O+1PIxyWtBsiv9+fDZ4FTCs9bC+wdchqWq7PbxF00y3MbWRsMG+43Alvz21uBGwrDt0g6WtKpwHrgjtFKHG9NBInDy5rkn+uWY9nfuUv6PLAJOEnSLPAB4CPATkkXA48AbwKIiHsk7QTuBZ4CLomIpyuqvfO6FrJdmh+fE71aVf6RzLhYNtwj4s2LPHT2Is+/ArhilKKsebtnZti0aVPTZXSWw2t5bqPR+PQDZpasuv7vt4sc7olKYYulir+2s0NSCa1U6ljKICHfhvmpg88tYzYk97vXr7e9p6envQwW4S33BKW0lZtSLVY+B2N3ecvdrEFd3mm43Hz5g6VaDnezhjUV8GWH66Dz0Pt8h3253C1jloC6g63M6XXhLKVd5HA3GzNlB3vZHPDlcLeMWSLmQ7fKcCsr2KsO4Pnxu6tmeN5yN0tMVYHWlmBvalpd43A3S1CZAV/mUZ4O2/Zwt0yCUvp5nL8WN6fY9sO8H5r+NUzZ0/V7cTAOd7Mh1Rk2/fbHV1VTKhsb1j+Hu1mLjPPWq0/3MBj3uScqhTdx2f2+1k4pbbWnVEvqHO5mtiiHaXs53BPW5NZuiv8ebwb+wOmXw91q06WumS7Ni3WTwz1xTYSIg8us/RzuLdDET+5scePSRil3f6RcWyoc7i1RR6B0ZRpVanv9Nj4c7i1SZbD424FZtzjcW6bsf4Nv6t/l2xjwbazZxpfDvaVGDZqmQt3M6uHTD7TYMCeWSinQUzpB2nJSajezfjjcO6Kt4dOGgG9r29p4c7eMNS7l8Ey5NrOlONzNFuFgtzZzuFsSUtvBm1ItZsNwuFtSUgjVFGowG5XD3ZLTZLg62A9JuS1Sri0V/rWMJanfv5Urc1pmXeJwt6RVGfIOdesyh7u1Qm8QDxP2DvPBpXgcgpdjfyrrc5d0nqQHJO2RdFlV07HxNP/rmrkINkxOHnZ/sYu1n5dj/yoJd0krgKuA1wGnA2+WdHoV0zKzajlQ26mqbpkzgT0R8R0ASVPABcC9FU2vNXbPzHD+5s1Nl7GsD2/f3oo6oT21tqVOSLfW3i6ixer0BxIoKmgESb8NnBcRb8vvvwV4VUS8vfCcbcC2/O5pwAMjTvYk4PsjjqMOrrN8bam1LXVCe2ptS51QTa0vioiTF3qgqi33hfbAHPYpEhHXANeUNkHpzojYWNb4quI6y9eWWttSJ7Sn1rbUCfXXWtUO1VnglML9tcDeiqZlZmY9qgr3bwDrJZ0q6ShgC3BjRdMyM7MelXTLRMRTkt4O3AKsAD4dEfdUMa2C0rp4KuY6y9eWWttSJ7Sn1rbUCTXXWskOVTMza5ZPHGZm1kEOdzOzDmpduEt6k6R7JP1M0saexy7PT3fwgKRzC8MnJX0rf+xPpfpPlpHa6RgkfVrSfkl3F4adKOlWSQ/m1ysLjy3YtjXUeYqkXZLuy5f7OxOu9bmS7pB0V17rh1KtNZ/2Ckm7Jd2UeJ0P5+vvNyXdmWqtkk6QdL2k+/P36682WmdEtOoCvJTsoKdpYGNh+OnAXcDRwKnAt4EV+WN3AL9K9vv7m4HX1VzziryeFwNH5XWe3nA7/mvgV4C7C8P+BLgsv30Z8NHl2raGOlcDv5LfPg74h7yeFGsVMJHfPhL4O+DVKdaaT/8PgM8BN6W6/PPpPwyc1DMsuVqBa4G35bePAk5oss7WbblHxH0RsdDRrBcAUxHxZEQ8BOwBzpS0Gjg+Ir4eWav+d+DCGkuGwukYIuKnwPzpGBoTEV8Fftgz+AKyNyj59YWF4c9q25rq3BcR/ze//QRwH7Am0VojIubyu0fml0ixVklrgd8EPlUYnFydS0iqVknHk20w7QCIiJ9GxMEm62xduC9hDfBo4f5sPmxNfrt3eJ0Wqy01qyJiH2ShCjw/H55E/ZLWARvItoiTrDXv6vgmsB+4NSJSrfW/An8I/KwwLMU6IfuA/LKkmfy0JZBerS8Gvgd8Ju/q+pSkY5usM8nzuUv6G+AFCzz03oi4YbGXLTAslhhepxRqGEXj9UuaAL4AvCsifrTEbpNGa42Ip4FXSDoB+JKkly3x9EZqlXQ+sD8iZiRt6uclCwyrc/mfFRF7JT0fuFXS/Us8t6lajyDr5vz9iPg7SZ8g64ZZTOV1JhnuEXHOEC9b7JQHs/nt3uF1asvpGB6XtDoi9uXdWfvz4Y3WL+lIsmD/bER8MeVa50XEQUnTwHmkV+tZwG9Jej3wXOB4SdclWCcAEbE3v94v6Utk3Rep1ToLzObf1ACuJwv3xursUrfMjcAWSUdLOhVYD9yRfxV6QtKr81/JvBVYbOu/Km05HcONwNb89lYOtdOCbVtHQfky2wHcFxEfT7zWk/MtdiQdA5wD3J9arRFxeUSsjYh1ZO/Fr0TERanVCSDpWEnHzd8GXgvcnVqtEfFd4FFJp+WDziY7xXlzddaxF7nMC/BvyD71ngQeB24pPPZesr3OD1D4RQywkewN8W3gSvIjc2uu+/Vkv/T4Nln3UtPt+HlgH/DPeXteDDwPuA14ML8+cbm2raHOf0X2dfXvgW/ml9cnWuu/AHbnteNEedIAAABdSURBVN4NvD8fnlythelv4tCvZZKrk6wv+678cs/8upNora8A7syX//8AVjZZp08/YGbWQV3qljEzs5zD3cysgxzuZmYd5HA3M+sgh7uZWQc53M3MOsjhbmbWQf8fBEplud2yjAwAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(1)\n",
"plt.title('segmented image')\n",
"plt.pcolormesh(ID[:,:],cmap='hot')\n",
"plt.grid(True)\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [],
"source": [
"Data = np.transpose(np.array([Lid,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,ID,Lid]))"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df/BddX3n8efL8EOaLzRB5Gsg1KBNqeCs0i+iXbetKShotWHXdTfOoulUJzM72OqoU6HOWu1sdrWTZmoHmNUx2uyifidFXVJ2UCkma92VRr4FKhAp0Vj4kpj4Ixn5ujYWfO8f53zlcPn+uD/Oj8859/WYuXPvPefec97n1+ue+zn3nKuIwMzMuuUZTRdgZmblc7ibmXWQw93MrIMc7mZmHeRwNzPrIIe7mVkHOdzNSiLpdyR9ZZF+vyBpTtKKuuuy8eRwN8tJ2ivprVUMOyIejoiJiHiiiuGb9XK4m5l1kMPdSiPpPZIelfSYpAclXZZ3f4akayV9U9L3Je2SdGbhfW+W9I95v/8k6duSLs/7vV/SX0q6KR/u1yX9kqTrJB2V9IikVxWG9fOSdkg6nNfyn+ebQuabTSRtk3RM0kFJr877bQV+Dbg+bz65Pu/+y5Jul/SDfJr+XWFcz5K0W9IPJe0Dnr/EvFknKSSdlD/fm9f2f/Px/VU+vE/mw/uapHWF9384n9YfSpqR9GuFfqdJ2plP035JfyBpttD/HEmfkfTdfJp/f8hFbC3icLdSSLoAeBvwkog4HbgC+Hbe+/eBq4DfAM4BjgE35O+7ELgR+A/AGuDngXN7Bv864H8Aq4G7gS+QrbvnAn8MfKTw2p3A48AvAhcDrwKKTS0vBR4EzgL+BNghSRHxXuBvgLflzSdvk7QSuB34FHA28EbgRkkX5cO6AfinvO7fzW+D2AS8KZ+O5wNfBT4BnAnsB/6o8NqvAS/O+30K+EtJz8z7/RGwDnge8Erg6vk3SXoG8FfAvfl4LgPeIemKAWu1tokI33wb+UYWpkeBy4GTe/rtBy4rPF8D/DNwEvA+4NOFfj8H/AS4PH/+fuD2Qv/XAXPAivz56UAAq4BJ4ARwWuH1bwT25I9/BzjQM64AnpM/3wu8tdD/3wN/0zMtHyEL0xX5NPxyod9/Ab6yyPxZl4/rpMK43lvo/6fAbT3Tec8S8/sY8KL88beAKwr93grM5o9fCjzc897rgE80vc74Vu3tpH4/BMyWEhEHJL2DLIwvkvQF4J0RcQh4LvA5ST8tvOUJsjA+B3ikMJz/J+n7PYM/Unj8Y+B78eSByR/n9xP5sE4GDkuaf/0zisMHvtMzrvn3LuS5wEslHS90O4nsW8Sz88fFYf/jIsNZTO909T7/WV2S3kUW2ueQfUicQfbtA3rmYc/j5wLn9EzDCrJvKdZhDncrTUR8CviUpDPI9nA/RNbs8AjwuxHxf3rfI+kwcEHh+WnAs4Ys4RGyPfezIuLxId7fe4nUR4D/HRGv7H1h3o7/OHAe8I288y8MMc5l5e3r7yFrUrk/In4q6Rgw/wl2GFgLPJA/P6/w9keAgxGxvoraLF1uc7dSSLpA0m9KOpWsHfrHZHvnAP8N2Crpuflrny1pY97vZuB1kv6lpFOAD/BkaA0kIg4DXwT+VNIZ+YHc50v6jT4HcYSs3XrercAvSXqTpJPz20skvSD/5vBZ4P2Sfi4/drB5mLr7cDrZB8l3gZMkvY9sz33eLuA6SaslnUt27GPePuCH+cHu0yStkPRCSS+pqFZLhMPdynIq8EHge2RNH2cDf5j3+zCwG/iipMeAO8nagomI+4HfA6bJ9kAfI2u7PzFkHW8GTiHbiz1G9uGxps/3fhj4t/mvTv48Ih4jOyC7CTiUT9eH8mmFLEQn8u5/QXYwtApfAG4D/oGs6eefeGrTyx8Ds8BB4K/JpvkEQP4h9Dqyg7EHyZbPx8gOXFuHKcJ/1mHpkDQBHAfWR8TBputpI0n/EdgUEf1+Y7EO8p67NU7S6/KmjZXANuDrPPkzSluGpDWSXp43Q10AvAv4XNN1WbMc7paCjWTNHoeA9WR7nf5K2b9TyA5gPwZ8CbiF7NwBG2NuljEz6yDvuZuZdVASv3M/66yzYt26dSMN40c/+hErV64sp6AKHT50iDXnnNN0GT9z98zMgt2fs2YN3zl8eKRhXzw1NdL7+9WWZb9cnYstizIMuizaOk/n52Fd694gqpinMzMz34uIZy/Ys+lTZCOCqampGNWePXtGHkYdtm/b1nQJP7MSFr1t37Ztyf793OrSlmW/XJ2jzu8yl0db52nd694gqpinwF2xSK721Syj7Cp9X5d0j6S78m5n5lfLeyi/X114/XWSDuRX0fMFisyWMCExoaHO2xp4PDY+Bmlz3xARL46IS/Ln1wJ3RHZa8x358/mr/G0CLgKuJLuKnv99Zgw5TJZWV6g3PU5rxigHVDeSXV6V/P6qQvfpiDgR2UkoB4BLRxiPWec0HbBNj9+q19dPISUdJDuVO4CPRMRHJR2PiFWF1xyLiNX5nxzcGRE35d13kF3K9OaeYW4BtgBMTk5OTU9PjzQhc3NzTEwsdnG/dBw9coSzJyebLgNY+gDeuWvX8ujs7KL9+1XHga22LPv5Oqs8cDqoxZZP2+bpvJQPqFYxTzds2DBTaE15qsUa44s34Jz8/myyi/7/OnC85zXH8vsbgKsL3XcAr19q+D6g2oyqD6jWdWCrLct+z549lR80LWs51TlPR6nXB1RHPKAa2TW5iYijZKc1XwockbQGstOfyS72BNkFjIqXHF1LduahLWO+PbSfm7VPSnvsKRhlXfZ2sLxlw13SSkmnzz8mu0refWRX+Zu/xOlmslOeybtvknSqpPPJTiffV3bhXTFsYDvo2yX15dTEgd0y+ANzcf3suU8CX5F0L1lI/6+I+DzZ5V1fKekhsv9t/CAwfwnXXWSXXP08cE08+a85liszmFMN+bmKLm3R+y3m7pmZpL/1pLhsFlLXzzHLHk+q63/Tlj1DNSK+Bbxoge7fJ/tnmIXesxXYOnJ1HVXVijghDRSocxGt2ijK/DCE6j582mzQdWjQYVepTetyHZK4/ICVp4vBVeWHIVQ7rxw4Gc+H+vnCYR3V9MZUVmD6zM36VdFsYvVzuHdYPxtVFXutZQyz7nbUqtqCzZricO+4ugO+rGBvStnt+m1V1q9Q2j4f2szhbkA6bfQphEEKNZiNyuE+BvoNq1ECfi5i5A+IlEI1pVqaMuo88DxslsN9TAwS8HMRfV+bo4xQhzSDYJSzJ82a5p9C2qJSaaoxs8F5z90al/Kebsq1pczzrXkO9zGS4gaXYk292lBjVcZ52tvO4W6NcXCYVcfhbtYHfxBZ2zjcx4xDymw8ONytEW38kGljzTa+HO5mZh3kcDez0vkcieY53M3MOsjhbrVz27VZ9RzuZlYJN800y+FuZotyQLeXw33MeGM1Gw8OdzOrjHcmmuNwNyuZA+2pPD+a4XAfI97IbBCp/beuDcbhblYBh9nTVT1PPM+fyuFuZk/T798sDqqqAHawP53DfUyktPKnVEuVxmU6B1X2fPF8XpjDfQx45bdB1LG+lPHH6oP8kfs4cribVcgfrEsbJuTL+GAYByc1XYBVK9WNYC6iddeYGXZetmlam1pfUl1P28x77h3mDcYG4fWlWxzuHeSvreUro304ZanXZ4NzuHdMmzbSNtVahlQP/o3bchgXDvcG+Le+T2pDzV0+UzO1eqw8fYe7pBWS7pZ0a/78TEm3S3oov19deO11kg5IelDSFVUU3nZlNp20vRkm5dqrqC2V5ZVCDVadQfbc3w7sLzy/FrgjItYDd+TPkXQhsAm4CLgSuFHSinLK7Z75DX3Yn4N5A22vJped15vu6yvcJa0Ffgv4WKHzRmBn/ngncFWh+3REnIiIg8AB4NJyyu22YmAvd+uaFKeprpN56tTV9ceeTtHHgpZ0M/BfgdOBd0fEayUdj4hVhdcci4jVkq4H7oyIm/LuO4DbIuLmnmFuAbYATE5OTk1PT480IXNzc0xMTIw0jDocPXKEsycnmy5jWU3Nz7tnZgZ+z7lr1/Lo7GypdVRx8HO5eTrMtPdr0OkZdfkPOi3Dzu/eOufHm+LB6yq2qQ0bNsxExCUL9oyIJW/Aa4Eb88evAG7NHx/ved2x/P4G4OpC9x3A65cax9TUVIxqz549Iw+jDtu3bWu6hL40OT9XwkC37du2DfyepW5VGWSeNj0twyz/JurtrbPqZTiKKrYp4K5YJFf7OUP15cBvS3oN8EzgDEk3AUckrYmIw5LWAEfz188C5xXevxY41OcHkVmjZ3Sm0mQxX8cw86HuaShzWc0PK5Xl0GbLtrlHxHURsTYi1pEdKP1SRFwN7AY25y/bDNySP94NbJJ0qqTzgfXAvtIrt1JNSE+53T0z85Tndau7bTjVtuhBjsPUPQ1VrhtNrXddMsq1ZT4I7JL0FuBh4A0AEXG/pF3AA8DjwDUR8cTIlVol+t2Aiq+rO3Sr3shTDPXU1RW8E5KXz5AGCveI2AvszR9/H7hskddtBbaOWJtVZNQNs+6vzlUGvINjcHXvUTvgh+OrQo6ZtraPFscx6jQ4KIbXVFOJ2+IH53AfI1W2j9bdVFMc9yCvt+G5DbxdHO5joI6NsqmvznMR7N271wFesVSC3U00/fOFwzquzo0ylQCwcqW2XFOrJ1UOdyuVNzyrg9ez5TncO6zpg1/Wfl6W7eVw7yhvlGlZ6MSwpW62PM+npTncrRLe8DLDhrVD3kblcO8gh0LzygrnJvfm27AeVXklzbZzuJuVrMrzCcz65XC3yoxjGFU9zXXNU+8Rt5/DvWPGMVBTUGfTiZfxU3l+LMzhbtZCDjRbjsPdbEQ+n8BS5HA3G0HTAdv0+C1dDnezITlYLWUOdzOzDnK4mw0hpb32lGqxdDjczTrAAW+9HO4d4z8yqJ6D1NrA4W5mreYdmoU53K0y3ujq5W8UVuRwN7OnuXhqqukSbEQO9w7yHrONC38ILc7hbpXwB0z7eRm2m8O9o5rcMB0KVgevZ0tzuHeYV36z8eVwt1L5A6VbvDzby+HecXMRtW2gDoJuSnG5plhTahzuY6LqjcEbW/PGZRmMy3SOyuE+RqraKLyxdV8qyziVOtrA4T5mytw46mzySck4TjM0P91Nj79tTmq6AKtfcSMZ5pR1b2TpqfO4ShOXOfA6N7hl99wlPVPSPkn3Srpf0gfy7mdKul3SQ/n96sJ7rpN0QNKDkq6ocgJsNPN73723i6emFu1n4x02da8H4zyvR9FPs8wJ4Dcj4kXAi4ErJb0MuBa4IyLWA3fkz5F0IbAJuAi4ErhR0ooqirfxMiEteLt7ZuZp3cZJU+FXx0F6B/vwlg33yMzlT0/ObwFsBHbm3XcCV+WPNwLTEXEiIg4CB4BLS63axsowgT2uQV83H6RPl6KPmZjvec8AvwjcEBHvkXQ8IlYVXnMsIlZLuh64MyJuyrvvAG6LiJt7hrkF2AIwOTk5NT09PdKEzM3NMTExMdIw6nD0yBHOnpxsuoxlNT0/756Z6fu1565dy6Ozs8u+roqLTFVR5yCqunDWsMt/kPnRa5hp6a1zfvwpXlCsim1qw4YNMxFxyYI9I6LvG7AK2AO8EDje0+9Yfn8DcHWh+w7g9UsNd2pqKka1Z8+ekYdRh+3btjVdQl+anJ8rYaDb9m3b+n5tk/UOUmdT0zKvjOVfxzT01lnHvBlWFdsUcFcskqsD/VomIo5L2kvWln5E0pqIOCxpDXA0f9kscF7hbWuBQ4OMx8ZX1c0oE1LpX/mb+AVJG5ot2lBjl/Xza5lnS1qVPz4NuBz4BrAb2Jy/bDNwS/54N7BJ0qmSzgfWA/vKLty6pc728SrG5V+PWGr62XNfA+zM292fAeyKiFslfRXYJektwMPAGwAi4n5Ju4AHgMeBayLiiWrKN0tHHXvwDnbr17LhHhF/D1y8QPfvA5ct8p6twNaRq7Ox0NQvWtrWRONgt0H4DFVrVNM/Vawq4IvDL3N4Zv3ytWXMKjRKMPskHhuFw90a0/Re+7w62snnL+nQ72sd6jYqN8uYUU3zzEIc2lYX77lbI1LZazfrKoe7mVkHuVmmQ3xt9tHU1TRjVgeHe8uN2rxRfH9dweYmGbPquVmmhaq6nK0vk2spWuw6/gtdy9+e5HBvmbpW4FEu3WpWBgf2aNws0xJNrOTz43Q7tNXJgV4O77m3QNMre9Pjt/HgPfVyec89YSmt6P4liVUlpfW8Sxzu1jcHfDVGDTcvE1uIwz1BKe/JuB1+dFX8yqmoLcsm5fW8C9zmnphxWOHbEj5lKv5sr45xpb4epV5fFzjcbSjeOPvTZNCmGvIp1tRFDveEtG2lb1u9yynzG0VKwZpaLVYPh3si2rrSD1t3l5tmUl2WTYd8qvOlqxzuZpT3YdOGAGtDjTY6h3sC2r6xtb3+MjS9Vzyoumtt07zpCoe7NSaVpplR62hrcLXtA8kG43BvWFc2rnFse+9KOFY9DV2YR23kcLfGNRnwbf5wKZMDuHsc7ja2Rgn2LoZhFdPUxfnUFg73BnVtxR9leuYiat2LHnZcXWmKWUyXp23cONwtKXUEvJtibBw43C05VYXvqN8OxmWvdlyms+sc7g3xBrS0MptpyhjWuC2vMv5mcdzmWWoc7pa0UYPZTTDDczi3m6/nbq1QDOnlQseBbuZwtxbqDe+9e/dWGujjvAfrf99qLzfLmC1hnIPd2s3hbmZL8gdcOy0b7pLOk7RH0n5J90t6e979TEm3S3oov19deM91kg5IelDSFVVOgFlVHGrWZv3suT8OvCsiXgC8DLhG0oXAtcAdEbEeuCN/Tt5vE3ARcCVwo6QVVRRvZmYLWzbcI+JwRPxd/vgxYD9wLrAR2Jm/bCdwVf54IzAdESci4iBwALi07MLNrD7+FtM+igGOhEtaB3wZeCHwcESsKvQ7FhGrJV0P3BkRN+XddwC3RcTNPcPaAmwBmJycnJqenh5pQubm5piYmBhpGHU4euQIZ09OlnKSSJXOXbuWR2dnB37fxVNTFVSztCqWfRXLZ9h52oSFah1m2Va9ni82T5tYD5dTxXq6YcOGmYi4ZMGeEdHXDZgAZoB/kz8/3tP/WH5/A3B1ofsO4PVLDXtqaipGtWfPnpGHUYft27b97PFKSPa2fdu2od7XhCqWfUrzNKXln8J8rKLOOlSxngJ3xSK52tevZSSdDHwG+GREfDbvfETSmrz/GuBo3n0WOK/w9rXAoX7GY5YCN0FYF/TzaxmR7X3vj4jthV67gc35483ALYXumySdKul8YD2wr7ySzcxsOf2cofpy4E3A1yXdk3f7Q+CDwC5JbwEeBt4AEBH3S9oFPED2S5trIuKJ0ivvgLmITu0l+kzG7vMZq+2xbLhHxFeAxRLoskXesxXYOkJdZtYBXduBaROfodqwruwFdWU6HETWFQ53M6tUVz7428bhbiPzxmvL8TpSP4d7Arzim1nZHO5mZh3kcE9EW/fe21q31a/M/8W15TncE9K2Fb9t9ZqNE4e7DcXBbsPyulMPh3ti2vDVNfX6LH1eh6rncE9Uqit/qnVZ+7RhR6bNHO4JS23FT60e6wavV9Xo58Jh1qBUrs1RxQY46HQ5BLprftmmsK53hffcW6DpUCt7/BPSUBvxsO8bRNPzetx5/pfHe+4tUfeezcVTU6VuaGXWXRyWw6B7isvUe/LD8557y9RxEKqKPfWqeOOvV90fpvPruw++Ds7h3lJVrOxVDLOO8E39z8atPL1hP/8N0+H/dG6WabmFVuh+ArWODaHOver5cZUxXakcxDYbhcO9g1LYg2kqHP03cNXxfG0XN8tY6bqw1+sgs7ZzuFupUgj2FGroGn/YtY/D3TrJAW/jzuFupXGgmqXD4W6lSDHYR63JTREZz4d2crhbpzngbVw53M1sUf5way+Hu40sxSaZMjngrI0c7ma2IH+otZvD3TqvjG8W4xZ0F09NNV2CjcjhbtancQn4cZnOrnO4m5l1kMPdbABdv7Rsl6dt3DjczYbQxRDs4jSNM4e7mTnYO2jZcJf0cUlHJd1X6HampNslPZTfry70u07SAUkPSrqiqsLNmtaVJpouTIM9XT977n8BXNnT7VrgjohYD9yRP0fShcAm4KL8PTdKWlFatdaXCWnJm5WrreHYlQ8nW9iy4R4RXwZ+0NN5I7Azf7wTuKrQfToiTkTEQeAAcGlJtdoy+g1vB335HJKWGkUfK6WkdcCtEfHC/PnxiFhV6H8sIlZLuh64MyJuyrvvAG6LiJsXGOYWYAvA5OTk1PT09EgTMjc3x8TExEjDqMPRI0c4e3KytOGV+efQxRNXBpmfTf9B9blr1/Lo7Oyi/es+IWex+bFcnXXpZ360ZXvqrXN+3qd4ElYV83TDhg0zEXHJgj0jYtkbsA64r/D8eE//Y/n9DcDVhe47gNcvN/ypqakY1Z49e0YeRh22b9tW2rBWQum3eYPMzyrqGOS2fdu2vqapTsPUWfVtEG3ZnnrrbHKZL6eKeQrcFYvk6rB/kH1E0pqIOCxpDXA07z4LnFd43Vrg0JDjsCVU1aTiP5gux/w8TKXpq8xlOsg0eV1qzrA/hdwNbM4fbwZuKXTfJOlUSecD64F9o5VoRXW0lQ86fG/Ai2vyoOX8uMsa/zDrno/vNKefn0J+GvgqcIGkWUlvAT4IvFLSQ8Ar8+dExP3ALuAB4PPANRHxRFXFW3WabkcvSyofPHMRXDw1VUs9VXyglBHODvh6LdssExFvXKTXZYu8fiuwdZSibGF1bxyDNNHMRXjj7VMVTTZVfWiUvUzd7FefYdvcrWZNBWebAz71EEm9Ph/XaTdffsA6yeExmqqb5VLaCegqh3sLNL0htO3XESnU0GZ1rW9Nr9dd53C30jlcrV8O+Oo43K0STf78z8wc7slLZc9mmDrqDFpfBKscTaxvqazjXeNwt0rVEbgpXkekjRyy3eJwt8pVGfDeWzdbmH/nbrUohvCoe4hVBPpyNflDpFr+7Xv5HO5Wu2HP0GzylPriax1C1gYOd2tMUyE56jeH+fc75C1lDncbG1VcJwUc8pYmH1C1zqv6krP+lYmlyOFuVgIHvKXGzTLWWU1cIhncTGNp8J574lIJilTq6Jf3pNulbetXGzjczUrmDxZLgcO9BZreq2l6/INKIVxTqGFQbVvOtjSHu3VKSqGaUi0p84dKNRzu1hkO09E5aLvD4d4Svj56O/kDZ2lev6rjcG+RujcEb3jjycu9GxzuLVPXhudrpI+3qpe//1yleg73Fqp6o2jjRpdy80fKtS2ljeuBPcnh3lJVbXjeoK2oivXB61g9fPmBFhv2uuhLDcusV1nrmdexejncO2CUjc8bnPUrlT9Zsf443Duk343PG5uNop/1zOtY8xzuHeQNy+rg9SxtPqBqZtZBDnczsw5yuJuZdZDD3cysgxzuZmYdVFm4S7pS0oOSDki6tqrxmEHav9xIuTbrrkrCXdIK4Abg1cCFwBslXVjFuMzM7Omq+p37pcCBiPgWgKRpYCPwQEXjM/MesllBVeF+LvBI4fks8NLiCyRtAbbkT+ckPTjiOM8CvjfiMOpw1jvf/e5W1Ek75ie0p9a21AntqXXBOpXmlTirmKfPXaxHVeG+0Jx9ym5VRHwU+GhpI5TuiohLyhpeVVxn+dpSa1vqhPbU2pY6of5aqzqgOgucV3i+FjhU0bjMzKxHVeH+NWC9pPMlnQJsAnZXNC4zM+tRSbNMRDwu6W3AF4AVwMcj4v4qxlVQWhNPxVxn+dpSa1vqhPbU2pY6oeZaFf6FgZlZ5/gMVTOzDnK4m5l1UOvCXdIbJN0v6aeSLunpd11+uYMHJV1R6D4l6et5vz9XAz+CTe1yDJI+LumopPsK3c6UdLukh/L71YV+C87bGuo8T9IeSfvz5f72hGt9pqR9ku7Na/1AqrXm414h6W5JtyZe57fz7fceSXelWqukVZJulvSNfH391UbrjIhW3YAXABcAe4FLCt0vBO4FTgXOB74JrMj77QN+lez397cBr6655hV5Pc8DTsnrvLDh+fjrwK8A9xW6/Qlwbf74WuBDy83bGupcA/xK/vh04B/yelKsVcBE/vhk4G+Bl6VYaz7+dwKfAm5Ndfnn4/82cFZPt+RqBXYCb80fnwKsarLO1u25R8T+iFjobNaNwHREnIiIg8AB4FJJa4AzIuKrkc3V/w5cVWPJULgcQ0T8BJi/HENjIuLLwA96Om8kW0HJ768qdH/avK2pzsMR8Xf548eA/WRnQKdYa0TEXP705PwWKdYqaS3wW8DHCp2Tq3MJSdUq6QyyHaYdABHxk4g43mSdrQv3JSx0yYNz89vsAt3rtFhtqZmMiMOQhSpwdt49ifolrQMuJtsjTrLWvKnjHuAocHtEpFrrnwF/APy00C3FOiH7gPyipJn8siWQXq3PA74LfCJv6vqYpJVN1pnkH2RL+mvgOQv0em9E3LLY2xboFkt0r1MKNYyi8folTQCfAd4RET9c4rBJo7VGxBPAiyWtAj4n6YVLvLyRWiW9FjgaETOSXtHPWxboVufyf3lEHJJ0NnC7pG8s8dqmaj2JrJnz9yLibyV9mKwZZjGV15lkuEfE5UO8bbFLHszmj3u716ktl2M4ImlNRBzOm7OO5t0brV/SyWTB/smI+GzKtc6LiOOS9gJXkl6tLwd+W9JrgGcCZ0i6KcE6AYiIQ/n9UUmfI2u+SK3WWWA2/6YGcDNZuDdWZ5eaZXYDmySdKul8YD2wL/8q9Jikl+W/knkzsNjef1XacjmG3cDm/PFmnpxPC87bOgrKl9kOYH9EbE+81mfne+xIOg24HPhGarVGxHURsTYi1pGti1+KiKtTqxNA0kpJp88/Bl4F3JdarRHxHeARSRfknS4ju8R5c3XWcRS5zBvwr8k+9U4AR4AvFPq9l+yo84MUfhEDXEK2QnwTuJ78zNya634N2S89vknWvNT0fPw0cBj453x+vgV4FnAH8FB+f+Zy87aGOv8V2dfVvwfuyW+vSbTWfwHcndd6H/C+vHtytRbG/wqe/LVMcnWStWXfm9/un992Eq31xcBd+cQ41IsAAAA7SURBVPL/n8DqJuv05QfMzDqoS80yZmaWc7ibmXWQw93MrIMc7mZmHeRwNzPrIIe7mVkHOdzNzDro/wPD8AlMiG6OYAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(1)\n",
"plt.title('segmented image')\n",
"plt.pcolormesh(Data[:,:,9],cmap='hot')\n",
"plt.grid(True)\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [],
"source": [
"Data.tofile(\"discs512x512x18.raw\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}