461 lines
16 KiB
C++
461 lines
16 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/stat.h>
|
|
#include <iostream>
|
|
#include <exception>
|
|
#include <stdexcept>
|
|
#include <fstream>
|
|
|
|
#include "analysis/pmmc.h"
|
|
#include "common/Domain.h"
|
|
#include "common/MPI_Helpers.h"
|
|
#include "common/Communication.h"
|
|
|
|
/*
|
|
* Pre-Processor to generate signed distance function from sphere packing
|
|
* to use as an input domain for lattice Boltzmann simulator
|
|
* James E. McClure 2014
|
|
*/
|
|
|
|
using namespace std;
|
|
|
|
void WriteLocalSolidID(char *FILENAME, char *ID, int N)
|
|
{
|
|
char value;
|
|
ofstream File(FILENAME,ios::binary);
|
|
for (int n=0; n<N; n++){
|
|
value = ID[n];
|
|
File.write((char*) &value, sizeof(value));
|
|
}
|
|
File.close();
|
|
}
|
|
|
|
void WriteLocalSolidDistance(char *FILENAME, double *Distance, int N)
|
|
{
|
|
double value;
|
|
ofstream File(FILENAME,ios::binary);
|
|
for (int n=0; n<N; n++){
|
|
value = Distance[n];
|
|
File.write((char*) &value, sizeof(value));
|
|
}
|
|
File.close();
|
|
}
|
|
|
|
void ReadSpherePacking(int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad)
|
|
{
|
|
// Read in the full sphere pack
|
|
//...... READ IN THE SPHERES...................................
|
|
cout << "Reading the packing file..." << endl;
|
|
FILE *fid = fopen("pack.out","rb");
|
|
INSIST(fid!=NULL,"Error opening pack.out");
|
|
//.........Trash the header lines..........
|
|
char line[100];
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
//........read the spheres..................
|
|
// We will read until a blank like or end-of-file is reached
|
|
int count = 0;
|
|
while ( !feof(fid) && fgets(line,100,fid)!=NULL ) {
|
|
char* line2 = line;
|
|
List_cx[count] = strtod(line2,&line2);
|
|
List_cy[count] = strtod(line2,&line2);
|
|
List_cz[count] = strtod(line2,&line2);
|
|
List_rad[count] = strtod(line2,&line2);
|
|
count++;
|
|
}
|
|
cout << "Number of spheres extracted is: " << count << endl;
|
|
INSIST( count==nspheres, "Specified number of spheres is probably incorrect!" );
|
|
// .............................................................
|
|
}
|
|
|
|
void AssignLocalSolidID(char *ID, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
|
|
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
// Use sphere lists to determine which nodes are in porespace
|
|
// Write out binary file for nodes
|
|
char value;
|
|
int N = Nx*Ny*Nz; // Domain size, including the halo
|
|
double hx,hy,hz;
|
|
double x,y,z;
|
|
double cx,cy,cz,r;
|
|
int imin,imax,jmin,jmax,kmin,kmax;
|
|
int p,i,j,k,n;
|
|
//............................................
|
|
double min_x,min_y,min_z;
|
|
// double max_x,max_y,max_z;
|
|
//............................................
|
|
// Lattice spacing for the entire domain
|
|
// It should generally be true that hx=hy=hz
|
|
// Otherwise, you will end up with ellipsoids
|
|
hx = Lx/(Nx*nprocx-1);
|
|
hy = Ly/(Ny*nprocy-1);
|
|
hz = Lz/(Nz*nprocz-1);
|
|
//............................................
|
|
// Get maximum and minimum for this domain
|
|
// Halo is included !
|
|
min_x = double(iproc*Nx-1)*hx;
|
|
min_y = double(jproc*Ny-1)*hy;
|
|
min_z = double(kproc*Nz-1)*hz;
|
|
// max_x = ((iproc+1)*Nx+1)*hx;
|
|
// max_y = ((jproc+1)*Ny+1)*hy;
|
|
// max_z = ((kproc+1)*Nz+1)*hz;
|
|
//............................................
|
|
|
|
//............................................
|
|
// Pre-initialize local ID
|
|
for (n=0;n<N;n++){
|
|
ID[n]=1;
|
|
}
|
|
//............................................
|
|
|
|
//............................................
|
|
// .........Loop over the spheres.............
|
|
for (p=0;p<nspheres;p++){
|
|
// Get the sphere from the list, map to local min
|
|
cx = List_cx[p] - min_x;
|
|
cy = List_cy[p] - min_y;
|
|
cz = List_cz[p] - min_z;
|
|
r = List_rad[p];
|
|
// Check if
|
|
// Range for this sphere in global indexing
|
|
imin = int ((cx-r)/hx)-1;
|
|
imax = int ((cx+r)/hx)+1;
|
|
jmin = int ((cy-r)/hy)-1;
|
|
jmax = int ((cy+r)/hy)+1;
|
|
kmin = int ((cz-r)/hz)-1;
|
|
kmax = int ((cz+r)/hz)+1;
|
|
// Obviously we have to do something at the edges
|
|
if (imin<0) imin = 0;
|
|
if (imin>Nx) imin = Nx;
|
|
if (imax<0) imax = 0;
|
|
if (imax>Nx) imax = Nx;
|
|
if (jmin<0) jmin = 0;
|
|
if (jmin>Ny) jmin = Ny;
|
|
if (jmax<0) jmax = 0;
|
|
if (jmax>Ny) jmax = Ny;
|
|
if (kmin<0) kmin = 0;
|
|
if (kmin>Nz) kmin = Nz;
|
|
if (kmax<0) kmax = 0;
|
|
if (kmax>Nz) kmax = Nz;
|
|
// Loop over the domain for this sphere (may be null)
|
|
for (i=imin;i<imax;i++){
|
|
for (j=jmin;j<jmax;j++){
|
|
for (k=kmin;k<kmax;k++){
|
|
// Initialize ID value to 'fluid (=1)'
|
|
x = i*hx;
|
|
y = j*hy;
|
|
z = k*hz;
|
|
value = 1;
|
|
// if inside sphere, set to zero
|
|
if ( (cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z) < r*r){
|
|
value=0;
|
|
}
|
|
// get the position in the list
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
if ( ID[n] != 0 ){
|
|
ID[n] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SignedDistance(double *Distance, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
|
|
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
// Use sphere lists to determine which nodes are in porespace
|
|
// Write out binary file for nodes
|
|
int N = Nx*Ny*Nz; // Domain size, including the halo
|
|
double hx,hy,hz;
|
|
double x,y,z;
|
|
double cx,cy,cz,r;
|
|
int imin,imax,jmin,jmax,kmin,kmax;
|
|
int p,i,j,k,n;
|
|
//............................................
|
|
double min_x,min_y,min_z;
|
|
double distance;
|
|
//............................................
|
|
// Lattice spacing for the entire domain
|
|
// It should generally be true that hx=hy=hz
|
|
// Otherwise, you will end up with ellipsoids
|
|
hx = Lx/((Nx-2)*nprocx-1);
|
|
hy = Ly/((Ny-2)*nprocy-1);
|
|
hz = Lz/((Nz-2)*nprocz-1);
|
|
//............................................
|
|
// Get maximum and minimum for this domain
|
|
// Halo is included !
|
|
min_x = double(iproc*(Nx-2)-1)*hx;
|
|
min_y = double(jproc*(Ny-2)-1)*hy;
|
|
min_z = double(kproc*(Nz-2)-1)*hz;
|
|
//............................................
|
|
|
|
//............................................
|
|
// Pre-initialize Distance
|
|
for (n=0;n<N;n++){
|
|
Distance[n]=100.0;
|
|
}
|
|
//............................................
|
|
|
|
//............................................
|
|
// .........Loop over the spheres.............
|
|
for (p=0;p<nspheres;p++){
|
|
// Get the sphere from the list, map to local min
|
|
cx = List_cx[p] - min_x;
|
|
cy = List_cy[p] - min_y;
|
|
cz = List_cz[p] - min_z;
|
|
r = List_rad[p];
|
|
// Check if
|
|
// Range for this sphere in global indexing
|
|
imin = int ((cx-2*r)/hx);
|
|
imax = int ((cx+2*r)/hx)+2;
|
|
jmin = int ((cy-2*r)/hy);
|
|
jmax = int ((cy+2*r)/hy)+2;
|
|
kmin = int ((cz-2*r)/hz);
|
|
kmax = int ((cz+2*r)/hz)+2;
|
|
// Obviously we have to do something at the edges
|
|
if (imin<0) imin = 0;
|
|
if (imin>Nx) imin = Nx;
|
|
if (imax<0) imax = 0;
|
|
if (imax>Nx) imax = Nx;
|
|
if (jmin<0) jmin = 0;
|
|
if (jmin>Ny) jmin = Ny;
|
|
if (jmax<0) jmax = 0;
|
|
if (jmax>Ny) jmax = Ny;
|
|
if (kmin<0) kmin = 0;
|
|
if (kmin>Nz) kmin = Nz;
|
|
if (kmax<0) kmax = 0;
|
|
if (kmax>Nz) kmax = Nz;
|
|
// Loop over the domain for this sphere (may be null)
|
|
for (i=imin;i<imax;i++){
|
|
for (j=jmin;j<jmax;j++){
|
|
for (k=kmin;k<kmax;k++){
|
|
// x,y,z is distance in physical units
|
|
x = i*hx;
|
|
y = j*hy;
|
|
z = k*hz;
|
|
// if inside sphere, set to zero
|
|
// get the position in the list
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
// Compute the distance
|
|
distance = sqrt((cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z)) - r;
|
|
// Assign the minimum distance
|
|
if (distance < Distance[n]) Distance[n] = distance;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Map the distance to lattice units
|
|
for (n=0; n<N; n++) Distance[n] = Distance[n]/hx;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
//*****************************************
|
|
// ***** MPI STUFF ****************
|
|
//*****************************************
|
|
// Initialize MPI
|
|
int rank,nprocs;
|
|
MPI_Init(&argc,&argv);
|
|
MPI_Comm comm = MPI_COMM_WORLD;
|
|
MPI_Comm_rank(comm,&rank);
|
|
MPI_Comm_size(comm,&nprocs);
|
|
// parallel domain size (# of sub-domains)
|
|
int nprocx,nprocy,nprocz;
|
|
int iproc,jproc,kproc;
|
|
int sendtag,recvtag;
|
|
//*****************************************
|
|
// MPI ranks for all 18 neighbors
|
|
//**********************************
|
|
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
|
|
int rank_xy,rank_XY,rank_xY,rank_Xy;
|
|
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
|
|
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
|
|
//**********************************
|
|
MPI_Request req1[18],req2[18];
|
|
MPI_Status stat1[18],stat2[18];
|
|
|
|
if (rank == 0){
|
|
printf("********************************************************\n");
|
|
printf("Running Sphere Packing pre-processor for LBPM-WIA \n");
|
|
printf("********************************************************\n");
|
|
}
|
|
|
|
double D = 1.0; // reference length for non-dimensionalization
|
|
// Load inputs
|
|
string FILENAME = argv[1];
|
|
// Load inputs
|
|
if (rank==0) printf("Loading input database \n");
|
|
auto db = std::make_shared<Database>( FILENAME );
|
|
auto domain_db = db->getDatabase( "Domain" );
|
|
int Nx = domain_db->getVector<int>( "n" )[0];
|
|
int Ny = domain_db->getVector<int>( "n" )[1];
|
|
int Nz = domain_db->getVector<int>( "n" )[2];
|
|
int nprocx = domain_db->getVector<int>( "nproc" )[0];
|
|
int nprocy = domain_db->getVector<int>( "nproc" )[1];
|
|
int nprocz = domain_db->getVector<int>( "nproc" )[2];
|
|
int nspheres = domain_db->getScalar<int>( "nsphere" );
|
|
int Lx = domain_db->getVector<double>( "L" )[0];
|
|
int Ly = domain_db->getVector<double>( "L" )[1];
|
|
int Lz = domain_db->getVector<double>( "L" )[2];
|
|
|
|
int i,j,k,n;
|
|
|
|
// **************************************************************
|
|
if (nprocs != nprocx*nprocy*nprocz){
|
|
printf("nprocx = %i \n",nprocx);
|
|
printf("nprocy = %i \n",nprocy);
|
|
printf("nprocz = %i \n",nprocz);
|
|
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
|
}
|
|
|
|
Nz += 2;
|
|
Nx = Ny = Nz; // Cubic domain
|
|
|
|
int N = Nx*Ny*Nz;
|
|
int dist_mem_size = N*sizeof(double);
|
|
|
|
if (rank==0) printf("Number of nodes per side = %i \n", Nx);
|
|
if (rank==0) printf("Total Number of nodes = %i \n", N);
|
|
if (rank==0) printf("********************************************************\n");
|
|
|
|
//.......................................................................
|
|
if (rank == 0) printf("Read input media... \n");
|
|
//.......................................................................
|
|
|
|
//.......................................................................
|
|
// Filenames used
|
|
char LocalRankString[8];
|
|
char LocalRankFilename[40];
|
|
char LocalRestartFile[40];
|
|
char tmpstr[10];
|
|
sprintf(LocalRankString,"%05d",rank);
|
|
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
|
|
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
|
|
|
|
// printf("Local File Name = %s \n",LocalRankFilename);
|
|
// .......... READ THE INPUT FILE .......................................
|
|
// char value;
|
|
char *id;
|
|
id = new char[N];
|
|
int sum = 0;
|
|
double sum_local;
|
|
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
|
|
double porosity, pore_vol;
|
|
//...........................................................................
|
|
DoubleArray SignDist(Nx,Ny,Nz);
|
|
//.......................................................................
|
|
|
|
// Read in sphere pack
|
|
if (rank==1) printf("nspheres =%i \n",nspheres);
|
|
//.......................................................................
|
|
double *cx,*cy,*cz,*rad;
|
|
cx = new double[nspheres];
|
|
cy = new double[nspheres];
|
|
cz = new double[nspheres];
|
|
rad = new double[nspheres];
|
|
//.......................................................................
|
|
if (rank == 0) printf("Reading the sphere packing \n");
|
|
if (rank == 0) ReadSpherePacking(nspheres,cx,cy,cz,rad);
|
|
MPI_Barrier(comm);
|
|
// Broadcast the sphere packing to all processes
|
|
MPI_Bcast(cx,nspheres,MPI_DOUBLE,0,comm);
|
|
MPI_Bcast(cy,nspheres,MPI_DOUBLE,0,comm);
|
|
MPI_Bcast(cz,nspheres,MPI_DOUBLE,0,comm);
|
|
MPI_Bcast(rad,nspheres,MPI_DOUBLE,0,comm);
|
|
//...........................................................................
|
|
MPI_Barrier(comm);
|
|
if (rank == 0) cout << "Domain set." << endl;
|
|
if (rank == 0){
|
|
// Compute the Sauter mean diameter
|
|
double totVol = 0.0;
|
|
double totArea = 0.0;
|
|
// Compute the total volume and area of all spheres
|
|
for (i=0; i<nspheres; i++){
|
|
totVol += 1.3333333333333*3.14159265359*rad[i]*rad[i]*rad[i];
|
|
totArea += 4.0*3.14159265359*rad[i]*rad[i];
|
|
}
|
|
D = 6.0*(Nx-2)*nprocx*totVol / totArea / Lx;
|
|
printf("Sauter Mean Diameter (computed from sphere packing) = %f \n",D);
|
|
}
|
|
MPI_Bcast(&D,1,MPI_DOUBLE,0,comm);
|
|
|
|
//.......................................................................
|
|
SignedDistance(SignDist.data(),nspheres,cx,cy,cz,rad,Lx,Ly,Lz,Nx,Ny,Nz,
|
|
iproc,jproc,kproc,nprocx,nprocy,nprocz);
|
|
//.......................................................................
|
|
// Assign the phase ID field based on the signed distance
|
|
//.......................................................................
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
id[n] = 0;
|
|
}
|
|
}
|
|
}
|
|
sum=0;
|
|
pore_vol = 0.0;
|
|
for ( k=1;k<Nz-1;k++){
|
|
for ( j=1;j<Ny-1;j++){
|
|
for ( i=1;i<Nx-1;i++){
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
if (SignDist(n) > 0.0){
|
|
id[n] = 2;
|
|
}
|
|
// compute the porosity (actual interface location used)
|
|
if (SignDist(n) > 0.0){
|
|
sum++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sum_local = 1.0*sum;
|
|
MPI_Allreduce(&sum_local,&porosity,1,MPI_DOUBLE,MPI_SUM,comm);
|
|
porosity = porosity*iVol_global;
|
|
if (rank==0) printf("Media porosity = %f \n",porosity);
|
|
|
|
// Compute the pore volume
|
|
sum_local = 0.0;
|
|
for ( k=1;k<Nz-1;k++){
|
|
for ( j=1;j<Ny-1;j++){
|
|
for ( i=1;i<Nx-1;i++){
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
if (id[n] > 0){
|
|
sum_local += 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MPI_Allreduce(&sum_local,&pore_vol,1,MPI_DOUBLE,MPI_SUM,comm);
|
|
|
|
//.........................................................
|
|
// don't perform computations at the eight corners
|
|
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
|
|
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
|
|
//.........................................................
|
|
|
|
//.......................................................................
|
|
sprintf(LocalRankString,"%05d",rank);
|
|
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
|
|
WriteLocalSolidDistance(LocalRankFilename, SignDist.data(), N);
|
|
//......................................................................
|
|
|
|
sprintf(LocalRankFilename,"ID.%05i",rank);
|
|
FILE *ID = fopen(LocalRankFilename,"wb");
|
|
fwrite(id,1,N,ID);
|
|
fclose(ID);
|
|
|
|
// ****************************************************
|
|
MPI_Barrier(comm);
|
|
MPI_Finalize();
|
|
// ****************************************************
|
|
}
|