786 lines
26 KiB
C++
786 lines
26 KiB
C++
#include <stdio.h>
|
|
|
|
extern "C" void ScaLBL_D3Q19_Pack(int q, int *list, int start, int count, double *sendbuf, double *dist, int N){
|
|
//....................................................................................
|
|
// Pack distribution q into the send buffer for the listed lattice sites
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int idx,n;
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
sendbuf[start+idx] = dist[q*N+n];
|
|
}
|
|
}
|
|
|
|
/*extern "C" void ScaLBL_D3Q19_Unpack(int q, int Cqx, int Cqy, int Cqz, int *list, int start, int count,
|
|
double *recvbuf, double *dist, int Nx, int Ny, int Nz){
|
|
//....................................................................................
|
|
// Unack distribution from the recv buffer
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int i,j,k,n,nn,idx;
|
|
int N = Nx*Ny*Nz;
|
|
for (idx=0; idx<count; idx++){
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
n = list[idx];
|
|
// Get the 3-D indices
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
// Streaming for the non-local distribution
|
|
i += Cqx;
|
|
j += Cqy;
|
|
k += Cqz;
|
|
|
|
nn = k*Nx*Ny+j*Nx+i;
|
|
|
|
// unpack the distribution to the proper location
|
|
dist[q*N+nn] = recvbuf[start+idx];
|
|
}
|
|
}*/
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_Unpack(int q, int *list, int start, int count,
|
|
double *recvbuf, double *dist, int N){
|
|
//....................................................................................
|
|
// Unack distribution from the recv buffer
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int n,idx;
|
|
for (idx=0; idx<count; idx++){
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
n = list[start+idx];
|
|
// unpack the distribution to the proper location
|
|
if (!(n<0)) dist[q*N+n] = recvbuf[start+idx];
|
|
//dist[q*N+n] = recvbuf[start+idx];
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
extern "C" void ScaLBL_D3Q19_MapRecv(int q, int Cqx, int Cqy, int Cqz, int *list, int start, int count,
|
|
int *d3q19_recvlist, int Nx, int Ny, int Nz){
|
|
//....................................................................................
|
|
// Map the recieve distributions to
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
|
|
int i,j,k,n,nn,idx;
|
|
int N = Nx*Ny*Nz;
|
|
for (idx=0; idx<count; idx++){
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
n = list[idx];
|
|
// Get the 3-D indices
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
// Streaming for the non-local distribution
|
|
i += Cqx;
|
|
j += Cqy;
|
|
k += Cqz;
|
|
// compute 1D index for the neighbor and save
|
|
nn = k*Nx*Ny+j*Nx+i;
|
|
d3q19_recvlist[start+idx] = nn;
|
|
}
|
|
}
|
|
|
|
*/
|
|
extern "C" void ScaLBL_D3Q19_Init(char *ID, double *f_even, double *f_odd, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
if (ID[n] > 0){
|
|
f_even[n] = 0.3333333333333333;
|
|
f_odd[n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
f_even[N+n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
f_odd[N+n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
f_even[2*N+n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
f_odd[2*N+n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
f_even[3*N+n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
f_odd[3*N+n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
f_even[4*N+n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
f_odd[4*N+n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
f_even[5*N+n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
f_odd[5*N+n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
f_even[6*N+n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
f_odd[6*N+n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
f_even[7*N+n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
f_odd[7*N+n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
f_even[8*N+n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
f_odd[8*N+n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
f_even[9*N+n] = 0.0277777777777778; //double(100*n)+18.f;
|
|
}
|
|
else{
|
|
for(int q=0; q<9; q++){
|
|
f_even[q*N+n] = -1.0;
|
|
f_odd[q*N+n] = -1.0;
|
|
}
|
|
f_even[9*N+n] = -1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//*************************************************************************
|
|
extern "C" void ScaLBL_D3Q19_Swap(char *ID, double *disteven, double *distodd, int Nx, int Ny, int Nz)
|
|
{
|
|
int i,j,k,n,nn,N;
|
|
// distributions
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
//.......Back out the 3-D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
|
|
if (ID[n] > 0){
|
|
//........................................................................
|
|
// Retrieve even distributions from the local node (swap convention)
|
|
// f0 = disteven[n]; // Does not particupate in streaming
|
|
f1 = distodd[n];
|
|
f3 = distodd[N+n];
|
|
f5 = distodd[2*N+n];
|
|
f7 = distodd[3*N+n];
|
|
f9 = distodd[4*N+n];
|
|
f11 = distodd[5*N+n];
|
|
f13 = distodd[6*N+n];
|
|
f15 = distodd[7*N+n];
|
|
f17 = distodd[8*N+n];
|
|
//........................................................................
|
|
|
|
//........................................................................
|
|
// Retrieve odd distributions from neighboring nodes (swap convention)
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
//if (i+1<Nx){
|
|
f2 = disteven[N+nn]; // pull neighbor for distribution 2
|
|
if (f2 > 0){
|
|
distodd[n] = f2;
|
|
disteven[N+nn] = f1;
|
|
}
|
|
//}
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if (j+1<Ny){
|
|
f4 = disteven[2*N+nn]; // pull neighbor for distribution 4
|
|
if (f4 > 0){
|
|
distodd[N+n] = f4;
|
|
disteven[2*N+nn] = f3;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (pull convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (k+1<Nz){
|
|
f6 = disteven[3*N+nn]; // pull neighbor for distribution 6
|
|
if (f6 > 0){
|
|
distodd[2*N+n] = f6;
|
|
disteven[3*N+nn] = f5;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if ((i+1<Nx) && (j+1<Ny)){
|
|
f8 = disteven[4*N+nn]; // pull neighbor for distribution 8
|
|
if (f8 > 0){
|
|
distodd[3*N+n] = f8;
|
|
disteven[4*N+nn] = f7;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if (!(i-1<0) && (j+1<Ny)){
|
|
f10 = disteven[5*N+nn]; // pull neighbor for distribution 9
|
|
if (f10 > 0){
|
|
distodd[4*N+n] = f10;
|
|
disteven[5*N+nn] = f9;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if ( !(i-1<0) && !(k-1<0)){
|
|
f12 = disteven[6*N+nn]; // pull distribution 11
|
|
if (f12 > 0){
|
|
distodd[5*N+n] = f12;
|
|
disteven[6*N+nn] = f11;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(i-1<0) && (k+1<Nz)){
|
|
f14 = disteven[7*N+nn]; // pull neighbor for distribution 13
|
|
if (f14 > 0){
|
|
distodd[6*N+n] = f14;
|
|
disteven[7*N+nn] = f13;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(j-1<0) && !(k-1<0)){
|
|
f16 = disteven[8*N+nn]; // pull neighbor for distribution 15
|
|
if (f16 > 0){
|
|
distodd[7*N+n] = f16;
|
|
disteven[8*N+nn] = f15;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(j-1<0) && (k+1<Nz)){
|
|
f18 = disteven[9*N+nn]; // pull neighbor for distribution 17
|
|
if (f18 > 0){
|
|
distodd[8*N+n] = f18;
|
|
disteven[9*N+nn] = f17;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Swap_Compact(int *neighborList, double *disteven, double *distodd, int Np)
|
|
{
|
|
int q,n,nn;
|
|
double f1,f2;
|
|
for (q=0; q<9; q++){
|
|
for (n=0; n<Np; n++){
|
|
nn = neighborList[q*Np+n];
|
|
if (!(nn<0)){
|
|
f1 = distodd[q*Np+n];
|
|
f2 = disteven[(q+1)*Np+nn];
|
|
disteven[(q+1)*Np+nn] = f1;
|
|
distodd[q*Np+n] = f2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_z(char *ID, double *disteven, double *distodd, double Q, double area,
|
|
int Nx, int Ny, int Nz){
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double din = 0.f;
|
|
N = Nx*Ny*Nz;
|
|
|
|
double sum = 0.f;
|
|
char id;
|
|
for (n=Nx*Ny; n<2*Nx*Ny; n++){
|
|
id = ID[n];
|
|
if (id > 0){
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
//f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
//f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
//f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
//f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
//f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//...................................................
|
|
|
|
// Determine the outlet flow velocity
|
|
//sum += 1.0 - (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+ f15+f18+f11+f14))/din;
|
|
//sum += (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+f15+f18+f11+f14));
|
|
sum += (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
}
|
|
}
|
|
din = sum/(A);
|
|
|
|
return din;
|
|
}
|
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_Z(char *ID, double *disteven, double *distodd, double Q, double area,
|
|
int Nx, int Ny, int Nz, int outlet){
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double dout = 0.f;
|
|
N = Nx*Ny*Nz;
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
double sum = 0.f;
|
|
char id;
|
|
for (n=outlet; n<N-Nx*Ny; n++){
|
|
id = ID[n];
|
|
if (id>0){
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
//f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
//f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
//f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
//f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
//f17 = disteven[9*N+n];
|
|
|
|
sum += (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
}
|
|
}
|
|
dout = sum/(A);
|
|
return dout;
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure_BC_z(double *disteven, double *distodd, double din,
|
|
int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double ux,uy,uz;
|
|
ux = uy = 0.0;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
double Cxz,Cyz;
|
|
|
|
for (n=Nx*Ny; n<2*Nx*Ny; n++){
|
|
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//...................................................
|
|
//........Determine the inlet flow velocity.........
|
|
// uz = -1 + (f0+f3+f4+f1+f2+f7+f8+f10+f9
|
|
// + 2*(f5+f15+f18+f11+f14))/din;
|
|
//........Set the unknown distributions..............
|
|
// f6 = f5 - 0.3333333333333333*din*uz;
|
|
// f16 = f15 - 0.1666666666666667*din*uz;
|
|
// f17 = f16 - f3 + f4-f15+f18-f7+f8-f10+f9;
|
|
// f12= 0.5*(-din*uz+f5+f15+f18+f11+f14-f6-f16-
|
|
// f17+f1-f2-f14+f11+f7-f8-f10+f9);
|
|
// f13= -din*uz+f5+f15+f18+f11+f14-f6-f16-f17-f12;
|
|
// Determine the inlet flow velocity
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
uz = din - (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
f5 = f6 + 0.3333333333333333*uz;
|
|
f11 = f12 + 0.1666666666666667*(uz+ux)-Cxz;
|
|
f14 = f13 + 0.1666666666666667*(uz-ux)+Cxz;
|
|
f15 = f16 + 0.1666666666666667*(uy+uz)-Cyz;
|
|
f18 = f17 + 0.1666666666666667*(uz-uy)+Cyz;
|
|
//........Store in "opposite" memory location..........
|
|
/* distodd[2*N+n] = f5;
|
|
distodd[5*N+n] = f11;
|
|
disteven[7*N+n] = f14;
|
|
distodd[7*N+n] = f15;
|
|
disteven[9*N+n] = f18;
|
|
|
|
*/
|
|
|
|
disteven[3*N+n] = f5;
|
|
disteven[6*N+n] = f11;
|
|
distodd[6*N+n] = f14;
|
|
disteven[8*N+n] = f15;
|
|
distodd[8*N+n] = f18;
|
|
/*
|
|
printf("Site=%i\n",n);
|
|
printf("ux=%f, uy=%f, uz=%f\n",ux,uy,uz);
|
|
printf("Cxz=%f, Cyz=%f\n",Cxz,Cyz);
|
|
n = N;
|
|
*/
|
|
//...................................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure_BC_Z(double *disteven, double *distodd, double dout,
|
|
int Nx, int Ny, int Nz, int outlet)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double ux,uy,uz;
|
|
ux = uy = 0.0;
|
|
|
|
double Cxz,Cyz;
|
|
N = Nx*Ny*Nz;
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
for (n=outlet; n<N-Nx*Ny; n++){
|
|
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//........Determine the outlet flow velocity.........
|
|
// uz = 1 - (f0+f3+f4+f1+f2+f7+f8+f10+f9+
|
|
// 2*(f6+f16+f17+f12+f13))/dout;
|
|
//...................................................
|
|
//........Set the Unknown Distributions..............
|
|
// f5 = f6 + 0.33333333333333338*dout*uz;
|
|
// f15 = f16 + 0.16666666666666678*dout*uz;
|
|
// f18 = f15+f3-f4-f16+f17+f7-f8+f10-f9;
|
|
// f11= 0.5*(dout*uz+f6+ f16+f17+f12+f13-f5
|
|
// -f15-f18-f1+f2-f13+f12-f7+f8+f10-f9);
|
|
// f14= dout*uz+f6+ f16+f17+f12+f13-f5-f15-f18-f11;
|
|
// Determine the outlet flow velocity
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
//uz = -1.0 + (f0+f4+f3+f2+f1+f8+f7+f9+f10 + 2*(f6+f16+f17+f12+f13))/dout;
|
|
|
|
// Determine the inlet flow velocity
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
uz = -dout + (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
f6 = f5 - 0.3333333333333333*uz;
|
|
f12 = f11 - 0.1666666666666667*(uz+ux)+Cxz;
|
|
f13 = f14 - 0.1666666666666667*(uz-ux)-Cxz;
|
|
f16 = f15 - 0.1666666666666667*(uy+uz)+Cyz;
|
|
f17 = f18 - 0.1666666666666667*(uz-uy)-Cyz;
|
|
|
|
//........Store in "opposite" memory location..........
|
|
distodd[2*N+n] = f6;
|
|
distodd[5*N+n] = f12;
|
|
disteven[7*N+n] = f13;
|
|
distodd[7*N+n] = f16;
|
|
disteven[9*N+n] = f17;
|
|
//...................................................
|
|
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_z(double *disteven, double *distodd, double uz,
|
|
int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double din;
|
|
double Cxz,Cyz;
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=Nx*Ny; n<2*Nx*Ny; n++){
|
|
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//...................................................
|
|
|
|
// Determine 'din' based on the inlet flow velocity
|
|
// NOTE: Default: ux = uy = 0.0, we only specify 'uz'
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
din = (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17))/(1.0-uz);
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8); // ux = 0.0
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8); // uy = 0.0
|
|
|
|
f5 = f6 + 0.3333333333333333*din*uz;
|
|
f11 = f12 + 0.1666666666666667*din*uz-Cxz;
|
|
f14 = f13 + 0.1666666666666667*din*uz+Cxz;
|
|
f15 = f16 + 0.1666666666666667*din*uz-Cyz;
|
|
f18 = f17 + 0.1666666666666667*din*uz+Cyz;
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
|
disteven[3*N+n] = f5;
|
|
disteven[6*N+n] = f11;
|
|
distodd[6*N+n] = f14;
|
|
disteven[8*N+n] = f15;
|
|
distodd[8*N+n] = f18;
|
|
//...................................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_Z(double *disteven, double *distodd, double uz,
|
|
int Nx, int Ny, int Nz, int outlet)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double dout;
|
|
double Cxz,Cyz;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
for (n=outlet; n<N-Nx*Ny; n++){
|
|
//........................................................................
|
|
// Read distributions from "opposite" memory convention
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//........................................................................
|
|
|
|
// Determine the 'dout' based on the outlet flow velocity
|
|
// Default: ux = uy = 0.0, we only specify 'uz'
|
|
// ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
// uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
dout = (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18))/(1.0+uz);
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8); // ux = 0.0
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8); // uy = 0.0
|
|
|
|
f6 = f5 - 0.3333333333333333*dout*uz;
|
|
f12 = f11 - 0.16666666666666678*dout*uz+Cxz;
|
|
f13 = f14 - 0.16666666666666678*dout*uz-Cxz;
|
|
f16 = f15 - 0.16666666666666678*dout*uz+Cyz;
|
|
f17 = f18 - 0.16666666666666678*dout*uz-Cyz;
|
|
|
|
//........Store in "opposite" memory location..........
|
|
distodd[2*N+n] = f6;
|
|
distodd[5*N+n] = f12;
|
|
disteven[7*N+n] = f13;
|
|
distodd[7*N+n] = f16;
|
|
disteven[9*N+n] = f17;
|
|
//...................................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity(char *ID, double *disteven, double *distodd, double *vel, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double vx,vy,vz;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
if (ID[n] > 0){
|
|
//........................................................................
|
|
// Registers to store the distributions
|
|
//........................................................................
|
|
f2 = disteven[N+n];
|
|
f4 = disteven[2*N+n];
|
|
f6 = disteven[3*N+n];
|
|
f8 = disteven[4*N+n];
|
|
f10 = disteven[5*N+n];
|
|
f12 = disteven[6*N+n];
|
|
f14 = disteven[7*N+n];
|
|
f16 = disteven[8*N+n];
|
|
f18 = disteven[9*N+n];
|
|
//........................................................................
|
|
f1 = distodd[n];
|
|
f3 = distodd[1*N+n];
|
|
f5 = distodd[2*N+n];
|
|
f7 = distodd[3*N+n];
|
|
f9 = distodd[4*N+n];
|
|
f11 = distodd[5*N+n];
|
|
f13 = distodd[6*N+n];
|
|
f15 = distodd[7*N+n];
|
|
f17 = distodd[8*N+n];
|
|
//.................Compute the velocity...................................
|
|
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
|
|
//..................Write the velocity.....................................
|
|
vel[n] = vx;
|
|
vel[N+n] = vy;
|
|
vel[2*N+n] = vz;
|
|
//........................................................................
|
|
|
|
}
|
|
else{
|
|
for(int q=0; q<9; q++){
|
|
disteven[q*N+n] = -1.0;
|
|
distodd[q*N+n] = -1.0;
|
|
}
|
|
disteven[9*N+n] = -1.0;
|
|
|
|
//For ID[n]<0 - solid nodes
|
|
vel[n] = 0.0;
|
|
vel[N+n] = 0.0;
|
|
vel[2*N+n] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure(const char *ID, const double *disteven, const double *distodd,
|
|
double *Pressure, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
if (ID[n] > 0){
|
|
//........................................................................
|
|
// Registers to store the distributions
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f2 = disteven[N+n];
|
|
f4 = disteven[2*N+n];
|
|
f6 = disteven[3*N+n];
|
|
f8 = disteven[4*N+n];
|
|
f10 = disteven[5*N+n];
|
|
f12 = disteven[6*N+n];
|
|
f14 = disteven[7*N+n];
|
|
f16 = disteven[8*N+n];
|
|
f18 = disteven[9*N+n];
|
|
//........................................................................
|
|
f1 = distodd[n];
|
|
f3 = distodd[1*N+n];
|
|
f5 = distodd[2*N+n];
|
|
f7 = distodd[3*N+n];
|
|
f9 = distodd[4*N+n];
|
|
f11 = distodd[5*N+n];
|
|
f13 = distodd[6*N+n];
|
|
f15 = distodd[7*N+n];
|
|
f17 = distodd[8*N+n];
|
|
//.................Compute the velocity...................................
|
|
Pressure[n] = 0.3333333333333333*(f0+f2+f1+f4+f3+f6+f5+f8+f7+f10+
|
|
f9+f12+f11+f14+f13+f16+f15+f18+f17);
|
|
}
|
|
}
|
|
}
|
|
|