Files
ResInsight/ApplicationLibCode/ProjectDataModel/Faults/RimFaultReactivationDataAccessorTemperature.cpp

186 lines
8.7 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFaultReactivationDataAccessorTemperature.h"
#include "RigFaultReactivationModel.h"
#include "RimFaultReactivationEnums.h"
#include "RiaDefines.h"
#include "RiaPorosityModel.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigEclipseWellLogExtractor.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigWellPath.h"
#include "RimEclipseCase.h"
#include "RimFaultReactivationDataAccessorWellLogExtraction.h"
#include <cmath>
#include <limits>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFaultReactivationDataAccessorTemperature::RimFaultReactivationDataAccessorTemperature( RimEclipseCase* eclipseCase,
double seabedTemperature,
double seabedDepth,
size_t firstTimeStep )
: m_eclipseCase( eclipseCase )
, m_caseData( nullptr )
, m_mainGrid( nullptr )
, m_seabedTemperature( seabedTemperature )
, m_seabedDepth( seabedDepth )
, m_firstTimeStep( firstTimeStep )
{
if ( m_eclipseCase )
{
m_caseData = m_eclipseCase->eclipseCaseData();
m_mainGrid = m_eclipseCase->mainGrid();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFaultReactivationDataAccessorTemperature::~RimFaultReactivationDataAccessorTemperature()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFaultReactivationDataAccessorTemperature::updateResultAccessor()
{
if ( !m_caseData ) return;
RigEclipseResultAddress resVarAddress( RiaDefines::ResultCatType::DYNAMIC_NATIVE, "TEMP" );
m_eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->ensureKnownResultLoaded( resVarAddress );
m_resultAccessor =
RigResultAccessorFactory::createFromResultAddress( m_caseData, 0, RiaDefines::PorosityModelType::MATRIX_MODEL, m_timeStep, resVarAddress );
// Only create the first time step accessor once: it is always the same.
if ( m_resultAccessor0.isNull() )
{
m_resultAccessor0 = RigResultAccessorFactory::createFromResultAddress( m_caseData,
0,
RiaDefines::PorosityModelType::MATRIX_MODEL,
m_firstTimeStep,
resVarAddress );
if ( m_resultAccessor0.notNull() )
{
auto [wellPaths, extractors] =
RimFaultReactivationDataAccessorWellLogExtraction::createEclipseWellPathExtractors( *m_model, *m_caseData, m_seabedDepth );
m_wellPaths = wellPaths;
m_extractors = extractors;
m_gradient = computeGradient();
}
}
}
//--------------------------------------------------------------------------------------------------
/// Find the top encounter with reservoir (of the two well paths), and create gradient from that point
//--------------------------------------------------------------------------------------------------
double RimFaultReactivationDataAccessorTemperature::computeGradient() const
{
double gradient = std::numeric_limits<double>::infinity();
double minDepth = -std::numeric_limits<double>::max();
for ( auto gridPart : m_model->allGridParts() )
{
auto extractor = m_extractors.find( gridPart )->second;
auto wellPath = m_wellPaths.find( gridPart )->second;
auto [values, intersections] =
RimFaultReactivationDataAccessorWellLogExtraction::extractValuesAndIntersections( *m_resultAccessor0.p(), *extractor.p(), *wellPath );
int lastOverburdenIndex = RimFaultReactivationDataAccessorWellLogExtraction::findLastOverburdenIndex( values );
if ( lastOverburdenIndex != -1 )
{
double depth = intersections[lastOverburdenIndex].z();
double value = values[lastOverburdenIndex];
if ( !std::isinf( value ) )
{
double currentGradient =
RimFaultReactivationDataAccessorWellLogExtraction::computeGradient( intersections[0].z(),
m_seabedTemperature,
intersections[lastOverburdenIndex].z(),
values[lastOverburdenIndex] );
if ( !std::isinf( value ) && !std::isnan( currentGradient ) && depth > minDepth )
{
gradient = currentGradient;
minDepth = depth;
}
}
}
}
return gradient;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFaultReactivationDataAccessorTemperature::isMatching( RimFaultReactivation::Property property ) const
{
return property == RimFaultReactivation::Property::Temperature;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
2023-12-06 16:00:42 +01:00
double RimFaultReactivationDataAccessorTemperature::valueAtPosition( const cvf::Vec3d& position,
const RigFaultReactivationModel& model,
RimFaultReactivation::GridPart gridPart,
double topDepth,
double bottomDepth,
size_t elementIndex ) const
{
if ( ( m_mainGrid != nullptr ) && m_resultAccessor.notNull() && m_resultAccessor0.notNull() )
{
auto cellIdx = m_mainGrid->findReservoirCellIndexFromPoint( position );
if ( cellIdx != cvf::UNDEFINED_SIZE_T )
{
double tempFromEclipse = m_resultAccessor->cellScalar( cellIdx );
if ( !std::isinf( tempFromEclipse ) ) return tempFromEclipse;
}
CAF_ASSERT( m_extractors.find( gridPart ) != m_extractors.end() );
auto extractor = m_extractors.find( gridPart )->second;
CAF_ASSERT( m_wellPaths.find( gridPart ) != m_wellPaths.end() );
auto wellPath = m_wellPaths.find( gridPart )->second;
// Use data from first time step when not in reservoir. This ensures that the only difference between the
// timesteps in the fault-reactivation model is in the reservoir.
auto [values, intersections] =
RimFaultReactivationDataAccessorWellLogExtraction::extractValuesAndIntersections( *m_resultAccessor0.p(), *extractor.p(), *wellPath );
auto [value, pos] =
RimFaultReactivationDataAccessorWellLogExtraction::calculateTemperature( intersections, position, m_seabedTemperature, m_gradient );
return value;
}
return std::numeric_limits<double>::infinity();
}