ResInsight/ApplicationCode/ProjectDataModel/Completions/RimFractureModel.cpp

1386 lines
56 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFractureModel.h"
#include "RiaCompletionTypeCalculationScheduler.h"
#include "RiaEclipseUnitTools.h"
#include "RiaFractureDefines.h"
#include "RiaFractureModelDefines.h"
#include "RiaLogging.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigSimulationWellCoordsAndMD.h"
#include "RigWellPath.h"
#include "RigWellPathIntersectionTools.h"
#include "Rim3dView.h"
#include "RimAnnotationCollection.h"
#include "RimAnnotationInViewCollection.h"
#include "RimColorLegend.h"
#include "RimColorLegendCollection.h"
#include "RimColorLegendItem.h"
#include "RimCompletionTemplateCollection.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimFractureModelPlot.h"
#include "RimFractureModelTemplate.h"
#include "RimFractureModelTemplateCollection.h"
#include "RimModeledWellPath.h"
#include "RimOilField.h"
#include "RimPolylineTarget.h"
#include "RimProject.h"
#include "RimTools.h"
#include "RimUserDefinedPolylinesAnnotation.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RimWellPathGeometryDef.h"
#include "RimWellPathTarget.h"
#include "Riu3DMainWindowTools.h"
#include "cafPdmFieldCvfVec3d.h"
#include "cafPdmFieldScriptingCapabilityCvfVec3d.h"
#include "cafPdmObjectScriptingCapability.h"
#include "cafPdmUiDoubleSliderEditor.h"
#include "cafPdmUiDoubleValueEditor.h"
#include "cafPdmUiPushButtonEditor.h"
#include "cafPdmUiToolButtonEditor.h"
#include "cafPdmUiTreeOrdering.h"
#include "cvfBoundingBox.h"
#include "cvfGeometryTools.h"
#include "cvfMath.h"
#include "cvfPlane.h"
#include <cmath>
CAF_PDM_SOURCE_INIT( RimFractureModel, "RimFractureModel" );
namespace caf
{
template <>
void caf::AppEnum<RimFractureModel::ExtractionType>::setUp()
{
addItem( RimFractureModel::ExtractionType::TRUE_VERTICAL_THICKNESS, "TVT", "True Vertical Thickness" );
addItem( RimFractureModel::ExtractionType::TRUE_STRATIGRAPHIC_THICKNESS, "TST", "True Stratigraphic Thickness" );
setDefault( RimFractureModel::ExtractionType::TRUE_VERTICAL_THICKNESS );
}
template <>
void caf::AppEnum<RimFractureModel::FractureOrientation>::setUp()
{
addItem( RimFractureModel::FractureOrientation::ALONG_WELL_PATH, "ALONG_WELL_PATH", "Along Well Path" );
addItem( RimFractureModel::FractureOrientation::TRANSVERSE_WELL_PATH,
"TRANSVERSE_WELL_PATH",
"Transverse (normal) to Well Path" );
setDefault( RimFractureModel::FractureOrientation::TRANSVERSE_WELL_PATH );
}
}; // namespace caf
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureModel::RimFractureModel()
{
CAF_PDM_InitScriptableObject( "FractureModel", "", "", "" );
CAF_PDM_InitFieldNoDefault( &m_fractureModelTemplate, "FractureModelTemplate", "Fracture Model Template", "", "", "" );
CAF_PDM_InitField( &m_editFractureModelTemplate, "EditModelTemplate", false, "Edit", "", "", "" );
m_editFractureModelTemplate.uiCapability()->setUiEditorTypeName( caf::PdmUiToolButtonEditor::uiEditorTypeName() );
m_editFractureModelTemplate.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
CAF_PDM_InitScriptableField( &m_MD, "MD", 0.0, "MD", "", "", "" );
m_MD.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleSliderEditor::uiEditorTypeName() );
CAF_PDM_InitScriptableField( &m_extractionType,
"ExtractionType",
caf::AppEnum<ExtractionType>( ExtractionType::TRUE_STRATIGRAPHIC_THICKNESS ),
"Extraction Type",
"",
"",
"" );
CAF_PDM_InitScriptableFieldNoDefault( &m_anchorPosition, "AnchorPosition", "Anchor Position", "", "", "" );
m_anchorPosition.uiCapability()->setUiReadOnly( true );
CAF_PDM_InitScriptableFieldNoDefault( &m_thicknessDirection, "ThicknessDirection", "Thickness Direction", "", "", "" );
m_thicknessDirection.uiCapability()->setUiReadOnly( true );
CAF_PDM_InitScriptableFieldNoDefault( &m_thicknessDirectionWellPath,
"ThicknessDirectionWellPath",
"Thickness Direction Well Path",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_boundingBoxHorizontal, "BoundingBoxHorizontal", 50.0, "Bounding Box Horizontal", "", "", "" );
CAF_PDM_InitScriptableField( &m_boundingBoxVertical, "BoundingBoxVertical", 100.0, "Bounding Box Vertical", "", "", "" );
// Stress unit: bar
// Stress gradient unit: bar/m
// Depth is meter
double defaultStressGradient = 0.238;
double defaultStressDepth = computeDefaultStressDepth();
double defaultStress = defaultStressDepth * defaultStressGradient;
CAF_PDM_InitScriptableField( &m_verticalStress, "VerticalStress", defaultStress, "Vertical Stress", "", "", "" );
m_verticalStress.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() );
CAF_PDM_InitScriptableField( &m_verticalStressGradient,
"VerticalStressGradient",
defaultStressGradient,
"Vertical Stress Gradient",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_stressDepth, "StressDepth", defaultStressDepth, "Stress Depth", "", "", "" );
m_stressDepth.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() );
CAF_PDM_InitScriptableField( &m_referenceTemperature, "ReferenceTemperature", 70.0, "Temperature [C]", "", "", "" );
CAF_PDM_InitScriptableField( &m_referenceTemperatureGradient,
"ReferenceTemperatureGradient",
0.025,
"Temperature Gradient [C/m]",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_referenceTemperatureDepth,
"ReferenceTemperatureDepth",
2500.0,
"Temperature Depth [m]",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_useDetailedFluidLoss, "UseDetailedFluidLoss", true, "Use Detailed Fluid Loss", "", "", "" );
CAF_PDM_InitScriptableField( &m_relativePermeabilityFactorDefault,
"RelativePermeabilityFactor",
0.5,
"Relative Permeability Factor",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_poroElasticConstantDefault, "PoroElasticConstant", 0.0, "Poro-Elastic Constant", "", "", "" );
CAF_PDM_InitScriptableField( &m_thermalExpansionCoeffientDefault,
"ThermalExpansionCoefficient",
0.0,
"Thermal Expansion Coefficient [1/C]",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_perforationLength, "PerforationLength", 10.0, "Perforation Length [m]", "", "", "" );
CAF_PDM_InitScriptableField( &m_fractureOrientation,
"FractureOrientation",
caf::AppEnum<FractureOrientation>( FractureOrientation::ALONG_WELL_PATH ),
"Fracture Orientation",
"",
"",
"" );
CAF_PDM_InitScriptableField( &m_formationDip, "FormationDip", 0.0, "Formation Dip", "", "", "" );
m_formationDip.uiCapability()->setUiReadOnly( true );
m_formationDip.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() );
CAF_PDM_InitScriptableField( &m_autoComputeBarrier, "AutoComputeBarrier", true, "Auto Compute Barrier", "", "", "" );
CAF_PDM_InitScriptableField( &m_hasBarrier, "Barrier", true, "Barrier", "", "", "" );
CAF_PDM_InitScriptableField( &m_distanceToBarrier, "DistanceToBarrier", 0.0, "Distance To Barrier [m]", "", "", "" );
m_distanceToBarrier.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() );
m_distanceToBarrier.uiCapability()->setUiReadOnly( true );
CAF_PDM_InitScriptableField( &m_barrierDip, "BarrierDip", 0.0, "Barrier Dip", "", "", "" );
m_barrierDip.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() );
m_barrierDip.uiCapability()->setUiReadOnly( true );
CAF_PDM_InitScriptableField( &m_wellPenetrationLayer, "WellPenetrationLayer", 0, "Well Penetration Layer", "", "", "" );
CAF_PDM_InitScriptableFieldNoDefault( &m_barrierAnnotation, "BarrierAnnotation", "Barrier Annotation", "", "", "" );
setDeletable( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureModel::~RimFractureModel()
{
clearBarrierAnnotation();
RimWellPath* wellPath = m_thicknessDirectionWellPath.value();
RimWellPathCollection* wellPathCollection = RimTools::wellPathCollection();
if ( wellPath && wellPathCollection )
{
wellPathCollection->removeWellPath( wellPath );
delete wellPath;
wellPathCollection->uiCapability()->updateConnectedEditors();
wellPathCollection->scheduleRedrawAffectedViews();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModel::isEnabled() const
{
return isChecked();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModel::useDetailedFluidLoss() const
{
return m_useDetailedFluidLoss();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::initAfterRead()
{
if ( m_fractureModelTemplate )
{
m_fractureModelTemplate->changed.connect( this, &RimFractureModel::fractureModelTemplateChanged );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::fieldChangedByUi( const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue )
{
if ( changedField == &m_MD )
{
updatePositionFromMeasuredDepth();
}
if ( changedField == &m_MD || changedField == &m_extractionType || changedField == &m_boundingBoxVertical ||
changedField == &m_boundingBoxHorizontal || changedField == &m_fractureOrientation ||
changedField == &m_autoComputeBarrier )
{
updateThicknessDirection();
if ( m_autoComputeBarrier )
{
updateDistanceToBarrierAndDip();
}
else
{
clearBarrierAnnotation();
}
}
if ( changedField == &m_autoComputeBarrier || changedField == &m_hasBarrier )
{
m_barrierDip.uiCapability()->setUiReadOnly( m_autoComputeBarrier || !m_hasBarrier );
m_distanceToBarrier.uiCapability()->setUiReadOnly( m_autoComputeBarrier || !m_hasBarrier );
}
if ( changedField == &m_extractionType || changedField == &m_thicknessDirectionWellPath )
{
updateThicknessDirectionWellPathName();
m_thicknessDirectionWellPath()->updateConnectedEditors();
}
if ( changedField == &m_useDetailedFluidLoss )
{
m_relativePermeabilityFactorDefault.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
m_poroElasticConstantDefault.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
m_thermalExpansionCoeffientDefault.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
m_referenceTemperature.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
m_referenceTemperatureGradient.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
m_referenceTemperatureDepth.uiCapability()->setUiReadOnly( !m_useDetailedFluidLoss );
}
if ( changedField == &m_editFractureModelTemplate )
{
m_editFractureModelTemplate = false;
if ( m_fractureModelTemplate != nullptr )
{
Riu3DMainWindowTools::selectAsCurrentItem( m_fractureModelTemplate() );
}
}
if ( changedField == &m_fractureModelTemplate )
{
setFractureModelTemplate( m_fractureModelTemplate() );
}
updateViewsAndPlots();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimFractureModel::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions,
bool* useOptionsOnly )
{
QList<caf::PdmOptionItemInfo> options;
if ( fieldNeedingOptions == &m_fractureModelTemplate )
{
RimOilField* oilField = RimProject::current()->activeOilField();
if ( oilField && oilField->completionTemplateCollection() )
{
RimFractureModelTemplateCollection* fracDefColl =
oilField->completionTemplateCollection()->fractureModelTemplateCollection();
for ( RimFractureModelTemplate* fracDef : fracDefColl->fractureModelTemplates() )
{
QString displayText = fracDef->name();
options.push_back( caf::PdmOptionItemInfo( displayText, fracDef ) );
}
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RimFractureModel::fracturePosition() const
{
return m_anchorPosition;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::WellPathComponentType RimFractureModel::componentType() const
{
return RiaDefines::WellPathComponentType::FRACTURE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::componentLabel() const
{
return name();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::componentTypeLabel() const
{
return "Fracture Model";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Color3f RimFractureModel::defaultComponentColor() const
{
return cvf::Color3f::RED; // RiaColorTables::wellPathComponentColors()[componentType()];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::startMD() const
{
return m_MD();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::endMD() const
{
return m_MD();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RimFractureModel::anchorPosition() const
{
return m_anchorPosition();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RimFractureModel::thicknessDirection() const
{
return m_thicknessDirection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updatePositionFromMeasuredDepth()
{
cvf::Vec3d positionAlongWellpath = cvf::Vec3d::ZERO;
caf::PdmObjectHandle* objHandle = dynamic_cast<caf::PdmObjectHandle*>( this );
if ( !objHandle ) return;
RimWellPath* wellPath = nullptr;
objHandle->firstAncestorOrThisOfType( wellPath );
if ( !wellPath ) return;
RigWellPath* wellPathGeometry = wellPath->wellPathGeometry();
if ( wellPathGeometry )
{
positionAlongWellpath = wellPathGeometry->interpolatedPointAlongWellPath( m_MD() );
}
m_anchorPosition = positionAlongWellpath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updateThicknessDirection()
{
// True vertical thickness: just point straight up
cvf::Vec3d direction( 0.0, 0.0, -1.0 );
if ( m_extractionType() == ExtractionType::TRUE_STRATIGRAPHIC_THICKNESS )
{
direction = calculateTSTDirection();
}
m_thicknessDirection = direction;
m_formationDip = calculateFormationDip( direction );
if ( m_thicknessDirectionWellPath )
{
cvf::Vec3d topPosition;
cvf::Vec3d bottomPosition;
findThicknessTargetPoints( topPosition, bottomPosition );
topPosition.z() *= -1.0;
bottomPosition.z() *= -1.0;
RimWellPathGeometryDef* wellGeomDef = m_thicknessDirectionWellPath->geometryDefinition();
wellGeomDef->deleteAllTargets();
RimWellPathTarget* topPathTarget = new RimWellPathTarget();
topPathTarget->setAsPointTargetXYD( topPosition );
RimWellPathTarget* bottomPathTarget = new RimWellPathTarget();
bottomPathTarget->setAsPointTargetXYD( bottomPosition );
wellGeomDef->insertTarget( nullptr, topPathTarget );
wellGeomDef->insertTarget( nullptr, bottomPathTarget );
wellGeomDef->updateConnectedEditors();
wellGeomDef->updateWellPathVisualization();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RimFractureModel::calculateTSTDirection() const
{
cvf::Vec3d defaultDirection = cvf::Vec3d( 0.0, 0.0, -1.0 );
RigEclipseCaseData* eclipseCaseData = getEclipseCaseData();
if ( !eclipseCaseData ) return defaultDirection;
RigMainGrid* mainGrid = eclipseCaseData->mainGrid();
if ( !mainGrid ) return defaultDirection;
cvf::Vec3d boundingBoxSize( m_boundingBoxHorizontal, m_boundingBoxHorizontal, m_boundingBoxVertical );
// Find upper face of cells close to the anchor point
cvf::BoundingBox boundingBox( m_anchorPosition() - boundingBoxSize, m_anchorPosition() + boundingBoxSize );
std::vector<size_t> closeCells;
mainGrid->findIntersectingCells( boundingBox, &closeCells );
// The stratigraphic thickness is the averge of normals of the top face
cvf::Vec3d direction = cvf::Vec3d::ZERO;
int numContributingCells = 0;
for ( size_t globalCellIndex : closeCells )
{
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
if ( !cell.isInvalid() )
{
2020-06-03 15:31:58 -05:00
direction += cell.faceNormalWithAreaLength( cvf::StructGridInterface::NEG_K ).getNormalized();
numContributingCells++;
}
}
RiaLogging::info( QString( "TST contributing cells: %1/%2" ).arg( numContributingCells ).arg( closeCells.size() ) );
if ( numContributingCells == 0 )
{
// No valid close cells found: just point straight up
return defaultDirection;
}
return ( direction / static_cast<double>( numContributingCells ) ).getNormalized();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updateDistanceToBarrierAndDip()
{
caf::PdmObjectHandle* objHandle = dynamic_cast<caf::PdmObjectHandle*>( this );
if ( !objHandle ) return;
RimWellPath* wellPath = nullptr;
objHandle->firstAncestorOrThisOfType( wellPath );
if ( !wellPath ) return;
RigEclipseCaseData* eclipseCaseData = getEclipseCaseData();
if ( !eclipseCaseData ) return;
const cvf::Vec3d& position = anchorPosition();
RiaLogging::info( "Computing distance to barrier." );
RiaLogging::info( QString( "Anchor position: %1" ).arg( RimFractureModel::vecToString( position ) ) );
RigWellPath* wellPathGeometry = wellPath->wellPathGeometry();
// Find the well path points closest to the anchor position
cvf::Vec3d p1;
cvf::Vec3d p2;
wellPathGeometry->twoClosestPoints( position, &p1, &p2 );
RiaLogging::info( QString( "Closest points on well path: %1 %2" )
.arg( RimFractureModel::vecToString( p1 ) )
.arg( RimFractureModel::vecToString( p2 ) ) );
// Create a well direction based on the two points
cvf::Vec3d wellDirection = ( p2 - p1 ).getNormalized();
RiaLogging::info( QString( "Well direction: %1" ).arg( RimFractureModel::vecToString( wellDirection ) ) );
cvf::Vec3d fractureDirection = wellDirection;
if ( m_fractureOrientation == FractureOrientation::ALONG_WELL_PATH )
{
cvf::Mat3d azimuthRotation = cvf::Mat3d::fromRotation( cvf::Vec3d::Z_AXIS, cvf::Math::toRadians( 90.0 ) );
fractureDirection.transformVector( azimuthRotation );
}
// The direction to the barrier is normal to the TST
cvf::Vec3d directionToBarrier = ( thicknessDirection() ^ fractureDirection ).getNormalized();
RiaLogging::info( QString( "Direction to barrier: %1" ).arg( RimFractureModel::vecToString( directionToBarrier ) ) );
std::vector<WellPathCellIntersectionInfo> intersections =
generateBarrierIntersections( eclipseCaseData, position, directionToBarrier );
RiaLogging::info( QString( "Intersections: %1" ).arg( intersections.size() ) );
double shortestDistance = std::numeric_limits<double>::max();
RigMainGrid* mainGrid = eclipseCaseData->mainGrid();
bool foundFault = false;
cvf::Vec3d barrierPosition;
double barrierDip = 0.0;
for ( const WellPathCellIntersectionInfo& intersection : intersections )
{
// Find the closest cell face which is a fault
double distance = position.pointDistance( intersection.startPoint );
const RigFault* fault = mainGrid->findFaultFromCellIndexAndCellFace( intersection.globCellIndex,
intersection.intersectedCellFaceIn );
if ( fault && distance < shortestDistance )
{
foundFault = true;
shortestDistance = distance;
barrierPosition = intersection.startPoint;
const RigCell& cell = mainGrid->globalCellArray()[intersection.globCellIndex];
cvf::Vec3d faceNormal = cell.faceNormalWithAreaLength( intersection.intersectedCellFaceIn );
barrierDip = calculateFormationDip( faceNormal );
}
}
if ( foundFault )
{
RiaLogging::info( QString( "Found barrier distance: %1 Dip: %2" ).arg( shortestDistance ).arg( barrierDip ) );
clearBarrierAnnotation();
addBarrierAnnotation( position, barrierPosition );
m_hasBarrier = true;
m_barrierDip = barrierDip;
m_distanceToBarrier = shortestDistance;
}
else
{
RiaLogging::info( "No barrier found." );
clearBarrierAnnotation();
m_hasBarrier = false;
m_barrierDip = 0.0;
m_distanceToBarrier = 0.0;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<WellPathCellIntersectionInfo>
RimFractureModel::generateBarrierIntersections( RigEclipseCaseData* eclipseCaseData,
const cvf::Vec3d& position,
const cvf::Vec3d& directionToBarrier )
{
double randoDistance = 10000.0;
cvf::Vec3d forwardPosition = position + ( directionToBarrier * randoDistance );
cvf::Vec3d backwardPosition = position + ( directionToBarrier * -randoDistance );
std::vector<WellPathCellIntersectionInfo> intersections =
generateBarrierIntersectionsBetweenPoints( eclipseCaseData, position, forwardPosition );
std::vector<WellPathCellIntersectionInfo> backwardIntersections =
generateBarrierIntersectionsBetweenPoints( eclipseCaseData, position, backwardPosition );
// Merge the intersections for the search for closest
intersections.insert( intersections.end(), backwardIntersections.begin(), backwardIntersections.end() );
return intersections;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<WellPathCellIntersectionInfo>
RimFractureModel::generateBarrierIntersectionsBetweenPoints( RigEclipseCaseData* eclipseCaseData,
const cvf::Vec3d& startPosition,
const cvf::Vec3d& endPosition )
{
// Create a fake well path from the anchor point to
// a point far away in the direction barrier direction
std::vector<cvf::Vec3d> pathCoords;
pathCoords.push_back( startPosition );
pathCoords.push_back( endPosition );
RigSimulationWellCoordsAndMD helper( pathCoords );
return RigWellPathIntersectionTools::findCellIntersectionInfosAlongPath( eclipseCaseData,
helper.wellPathPoints(),
helper.measuredDepths() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::clearBarrierAnnotation()
{
auto existingAnnotation = m_barrierAnnotation.value();
if ( existingAnnotation )
{
delete existingAnnotation;
m_barrierAnnotation = nullptr;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::addBarrierAnnotation( const cvf::Vec3d& startPosition, const cvf::Vec3d& endPosition )
{
RimAnnotationCollection* coll = annotationCollection();
if ( !coll ) return;
auto newAnnotation = new RimUserDefinedPolylinesAnnotation();
RimPolylineTarget* startTarget = new RimPolylineTarget();
startTarget->setAsPointXYZ( startPosition );
newAnnotation->insertTarget( nullptr, startTarget );
RimPolylineTarget* endTarget = new RimPolylineTarget();
endTarget->setAsPointXYZ( endPosition );
newAnnotation->insertTarget( nullptr, endTarget );
m_barrierAnnotation = newAnnotation;
coll->addAnnotation( newAnnotation );
coll->scheduleRedrawOfRelevantViews();
coll->updateConnectedEditors();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimAnnotationCollection* RimFractureModel::annotationCollection()
{
const auto project = RimProject::current();
auto oilField = project->activeOilField();
return oilField ? oilField->annotationCollection() : nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
m_thicknessDirectionWellPath.uiCapability()->setUiHidden( true );
m_barrierAnnotation.uiCapability()->setUiHidden( true );
2020-09-03 07:50:42 -05:00
uiOrdering.add( nameField(), caf::PdmUiOrdering::LayoutOptions( true, 3, 1 ) );
uiOrdering.add( &m_fractureModelTemplate, {true, 2, 1} );
uiOrdering.add( &m_editFractureModelTemplate, {false, 1, 0} );
2020-09-03 07:50:42 -05:00
uiOrdering.add( &m_MD );
uiOrdering.add( &m_extractionType );
uiOrdering.add( &m_anchorPosition );
uiOrdering.add( &m_thicknessDirection );
caf::PdmUiOrdering* boundingBoxGroup = uiOrdering.addNewGroup( "Bounding Box" );
boundingBoxGroup->add( &m_boundingBoxHorizontal );
boundingBoxGroup->add( &m_boundingBoxVertical );
caf::PdmUiOrdering* referenceStressGroup = uiOrdering.addNewGroup( "Reference Stress" );
referenceStressGroup->add( &m_verticalStress );
referenceStressGroup->add( &m_verticalStressGradient );
referenceStressGroup->add( &m_stressDepth );
caf::PdmUiOrdering* detailedFluidLossGroup = uiOrdering.addNewGroup( "Detailed Fluid Loss" );
detailedFluidLossGroup->add( &m_useDetailedFluidLoss );
detailedFluidLossGroup->add( &m_relativePermeabilityFactorDefault );
detailedFluidLossGroup->add( &m_poroElasticConstantDefault );
detailedFluidLossGroup->add( &m_thermalExpansionCoeffientDefault );
caf::PdmUiOrdering* temperatureGroup = detailedFluidLossGroup->addNewGroup( "Temperature" );
temperatureGroup->add( &m_referenceTemperature );
temperatureGroup->add( &m_referenceTemperatureGradient );
temperatureGroup->add( &m_referenceTemperatureDepth );
caf::PdmUiOrdering* perforationGroup = uiOrdering.addNewGroup( "Perforation" );
perforationGroup->add( &m_perforationLength );
perforationGroup->add( &m_fractureOrientation );
caf::PdmUiOrdering* asymmetricGroup = uiOrdering.addNewGroup( "Asymmetric" );
asymmetricGroup->add( &m_formationDip );
asymmetricGroup->add( &m_hasBarrier );
asymmetricGroup->add( &m_autoComputeBarrier );
asymmetricGroup->add( &m_distanceToBarrier );
asymmetricGroup->add( &m_barrierDip );
asymmetricGroup->add( &m_wellPenetrationLayer );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::defineEditorAttribute( const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute )
{
if ( field == &m_stressDepth || field == &m_verticalStress || field == &m_formationDip || field == &m_barrierDip ||
field == &m_distanceToBarrier )
{
auto doubleAttr = dynamic_cast<caf::PdmUiDoubleValueEditorAttribute*>( attribute );
if ( doubleAttr )
{
doubleAttr->m_decimals = 2;
doubleAttr->m_numberFormat = caf::PdmUiDoubleValueEditorAttribute::NumberFormat::FIXED;
}
}
if ( field == &m_MD )
{
caf::PdmUiDoubleSliderEditorAttribute* myAttr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>( attribute );
if ( myAttr )
{
RimWellPath* rimWellPath = nullptr;
this->firstAncestorOrThisOfType( rimWellPath );
if ( !rimWellPath ) return;
RigWellPath* wellPathGeo = rimWellPath->wellPathGeometry();
if ( !wellPathGeo ) return;
if ( wellPathGeo->m_measuredDepths.size() > 1 )
{
myAttr->m_minimum = wellPathGeo->m_measuredDepths.front();
myAttr->m_maximum = wellPathGeo->m_measuredDepths.back();
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellPath* RimFractureModel::wellPath() const
{
const caf::PdmObjectHandle* objHandle = dynamic_cast<const caf::PdmObjectHandle*>( this );
if ( !objHandle ) return nullptr;
RimWellPath* wellPath = nullptr;
objHandle->firstAncestorOrThisOfType( wellPath );
return wellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimModeledWellPath* RimFractureModel::thicknessDirectionWellPath() const
{
return m_thicknessDirectionWellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::setThicknessDirectionWellPath( RimModeledWellPath* thicknessDirectionWellPath )
{
m_thicknessDirectionWellPath = thicknessDirectionWellPath;
updateThicknessDirectionWellPathName();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updateThicknessDirectionWellPathName()
{
QString wellNameFormat( "%1 for %2" );
m_thicknessDirectionWellPath()->setName( wellNameFormat.arg( m_extractionType().text() ).arg( name() ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::vecToString( const cvf::Vec3d& vec )
{
return QString( "[%1, %2, %3]" ).arg( vec.x() ).arg( vec.y() ).arg( vec.z() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::findThicknessTargetPoints( cvf::Vec3d& topPosition, cvf::Vec3d& bottomPosition )
{
RigEclipseCaseData* eclipseCaseData = getEclipseCaseData();
if ( !eclipseCaseData ) return;
const cvf::Vec3d& position = anchorPosition();
const cvf::Vec3d& direction = thicknessDirection();
// Create a "fake" well path which from top to bottom of formation
// passing through the point and with the given direction
const cvf::BoundingBox& geometryBoundingBox = eclipseCaseData->mainGrid()->boundingBox();
RiaLogging::info( QString( "All cells bounding box: %1 %2" )
.arg( RimFractureModel::vecToString( geometryBoundingBox.min() ) )
.arg( RimFractureModel::vecToString( geometryBoundingBox.max() ) ) );
RiaLogging::info( QString( "Position: %1" ).arg( RimFractureModel::vecToString( position ) ) );
RiaLogging::info( QString( "Direction: %1" ).arg( RimFractureModel::vecToString( direction ) ) );
// Create plane on top and bottom of formation
cvf::Plane topPlane;
topPlane.setFromPointAndNormal( geometryBoundingBox.max(), cvf::Vec3d::Z_AXIS );
cvf::Plane bottomPlane;
bottomPlane.setFromPointAndNormal( geometryBoundingBox.min(), cvf::Vec3d::Z_AXIS );
// Find and add point on top plane
cvf::Vec3d abovePlane = position + ( direction * -10000.0 );
topPlane.intersect( position, abovePlane, &topPosition );
RiaLogging::info( QString( "Top: %1" ).arg( RimFractureModel::vecToString( topPosition ) ) );
// Find and add point on bottom plane
cvf::Vec3d belowPlane = position + ( direction * 10000.0 );
bottomPlane.intersect( position, belowPlane, &bottomPosition );
RiaLogging::info( QString( "Bottom: %1" ).arg( RimFractureModel::vecToString( bottomPosition ) ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::calculateFormationDip( const cvf::Vec3d& direction )
{
// Formation dip is inclination of a plane from horizontal.
return cvf::Math::toDegrees( cvf::GeometryTools::getAngle( direction, -cvf::Vec3d::Z_AXIS ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::loadDataAndUpdate()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultPorosity() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultPorosity() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultPermeability() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultPermeability() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getDefaultForMissingValue( const QString& keyword ) const
{
if ( keyword == QString( "PORO" ) )
{
return defaultPorosity();
}
2020-06-12 05:53:06 -05:00
else if ( keyword == QString( "PERMX" ) || keyword == QString( "PERMZ" ) )
{
return defaultPermeability();
}
else
{
RiaLogging::error( QString( "Missing default value for %1." ).arg( keyword ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::CurveProperty RimFractureModel::getDefaultPropertyForMissingValues( const QString& keyword ) const
{
if ( keyword == QString( "PRESSURE" ) )
{
return RiaDefines::CurveProperty::INITIAL_PRESSURE;
}
return RiaDefines::CurveProperty::UNDEFINED;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getDefaultForMissingOverburdenValue( const QString& keyword ) const
{
if ( keyword == QString( "PORO" ) )
{
return defaultOverburdenPorosity();
}
else if ( keyword == QString( "PERMX" ) || keyword == QString( "PERMZ" ) )
{
return defaultOverburdenPermeability();
}
else
{
RiaLogging::error( QString( "Missing default overburden value for %1." ).arg( keyword ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getDefaultForMissingUnderburdenValue( const QString& keyword ) const
{
if ( keyword == QString( "PORO" ) )
{
return defaultUnderburdenPorosity();
}
else if ( keyword == QString( "PERMX" ) || keyword == QString( "PERMZ" ) )
{
return defaultUnderburdenPermeability();
}
else
{
RiaLogging::error( QString( "Missing default underburden value for %1." ).arg( keyword ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getOverburdenGradient( const QString& keyword ) const
{
if ( keyword == QString( "PRESSURE" ) )
{
if ( !m_fractureModelTemplate )
{
return 0.0;
}
return m_fractureModelTemplate()->overburdenFluidDensity() * 9.81 * 1000.0 / 1.0e5;
}
else
{
RiaLogging::error( QString( "Missing overburden gradient for %1." ).arg( keyword ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getUnderburdenGradient( const QString& keyword ) const
{
if ( keyword == QString( "PRESSURE" ) )
{
if ( !m_fractureModelTemplate )
{
return 0.0;
}
return m_fractureModelTemplate()->underburdenFluidDensity() * 9.81 * 1000.0 / 1.0e5;
}
else
{
RiaLogging::error( QString( "Missing underburden gradient for %1." ).arg( keyword ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::getDefaultValueForProperty( RiaDefines::CurveProperty curveProperty ) const
{
if ( curveProperty == RiaDefines::CurveProperty::RELATIVE_PERMEABILITY_FACTOR )
{
return m_relativePermeabilityFactorDefault;
}
else if ( curveProperty == RiaDefines::CurveProperty::PORO_ELASTIC_CONSTANT )
{
return m_poroElasticConstantDefault;
}
else if ( curveProperty == RiaDefines::CurveProperty::THERMAL_EXPANSION_COEFFICIENT )
{
return m_thermalExpansionCoeffientDefault;
}
else
{
RiaLogging::error(
QString( "Missing default for %1." ).arg( caf::AppEnum<RiaDefines::CurveProperty>( curveProperty ).uiText() ) );
return std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModel::hasDefaultValueForProperty( RiaDefines::CurveProperty curveProperty ) const
{
auto withDefaults = {RiaDefines::CurveProperty::RELATIVE_PERMEABILITY_FACTOR,
RiaDefines::CurveProperty::PORO_ELASTIC_CONSTANT,
RiaDefines::CurveProperty::THERMAL_EXPANSION_COEFFICIENT};
return std::find( withDefaults.begin(), withDefaults.end(), curveProperty ) != withDefaults.end();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::verticalStress() const
{
return m_verticalStress;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::verticalStressGradient() const
{
return m_verticalStressGradient;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::stressDepth() const
{
return m_stressDepth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::overburdenHeight() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->overburdenHeight() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::underburdenHeight() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->underburdenHeight() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultOverburdenPorosity() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultOverburdenPorosity() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultUnderburdenPorosity() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultUnderburdenPorosity() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultOverburdenPermeability() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultOverburdenPermeability() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::defaultUnderburdenPermeability() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->defaultUnderburdenPermeability() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::overburdenFormation() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->overburdenFormation() : "";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::overburdenFacies() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->overburdenFacies() : "";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::underburdenFormation() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->underburdenFormation() : "";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureModel::underburdenFacies() const
{
return m_fractureModelTemplate() ? m_fractureModelTemplate()->underburdenFacies() : "";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updateReferringPlots()
{
// Update plots referring to this fracture model
std::vector<RimFractureModelPlot*> referringObjects;
objectsWithReferringPtrFieldsOfType( referringObjects );
for ( auto modelPlot : referringObjects )
{
if ( modelPlot ) modelPlot->loadDataAndUpdate();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::setMD( double md )
{
m_MD = md;
updatePositionFromMeasuredDepth();
updateThicknessDirection();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::referenceTemperature() const
{
return m_referenceTemperature;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::referenceTemperatureGradient() const
{
return m_referenceTemperatureGradient;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::referenceTemperatureDepth() const
{
return m_referenceTemperatureDepth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimEclipseCase* RimFractureModel::getEclipseCase()
{
// Find an eclipse case
RimProject* proj = RimProject::current();
if ( proj->eclipseCases().empty() ) return nullptr;
return proj->eclipseCases()[0];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseCaseData* RimFractureModel::getEclipseCaseData()
{
// Find an eclipse case
RimEclipseCase* eclipseCase = getEclipseCase();
if ( !eclipseCase ) return nullptr;
return eclipseCase->eclipseCaseData();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::computeDefaultStressDepth()
{
const double stressDepth = 1000.0;
RimEclipseCase* eclipseCase = getEclipseCase();
if ( !eclipseCase ) return stressDepth;
// Use top of active cells as reference stress depth
return -eclipseCase->activeCellsBoundingBox().max().z();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::perforationLength() const
{
return m_perforationLength();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureModel::FractureOrientation RimFractureModel::fractureOrientation() const
{
return m_fractureOrientation();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::formationDip() const
{
return m_formationDip;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureModel::hasBarrier() const
{
return m_hasBarrier;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::distanceToBarrier() const
{
return m_distanceToBarrier;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureModel::barrierDip() const
{
return m_barrierDip;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimFractureModel::wellPenetrationLayer() const
{
return m_wellPenetrationLayer;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::setFractureModelTemplate( RimFractureModelTemplate* fractureModelTemplate )
{
if ( m_fractureModelTemplate )
{
m_fractureModelTemplate->changed.disconnect( this );
}
m_fractureModelTemplate = fractureModelTemplate;
if ( m_fractureModelTemplate )
{
m_fractureModelTemplate->changed.connect( this, &RimFractureModel::fractureModelTemplateChanged );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureModelTemplate* RimFractureModel::fractureModelTemplate() const
{
return m_fractureModelTemplate;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::fractureModelTemplateChanged( const caf::SignalEmitter* emitter )
{
updateViewsAndPlots();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureModel::updateViewsAndPlots()
{
RimEclipseCase* eclipseCase = nullptr;
this->firstAncestorOrThisOfType( eclipseCase );
if ( eclipseCase )
{
RiaCompletionTypeCalculationScheduler::instance()->scheduleRecalculateCompletionTypeAndRedrawAllViews( eclipseCase );
}
else
{
RiaCompletionTypeCalculationScheduler::instance()->scheduleRecalculateCompletionTypeAndRedrawAllViews();
}
RimProject::current()->scheduleCreateDisplayModelAndRedrawAllViews();
updateReferringPlots();
}