ResInsight/ApplicationCode/ModelVisualization/Riv3dWellLogCurveGeomertyGenerator.cpp

251 lines
11 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogCurveGeomertyGenerator.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RigCurveDataTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "cafDisplayCoordTransform.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfBoundingBox.h"
#include "cvfMath.h"
2018-03-13 03:42:54 -05:00
#include <cmath>
2018-03-21 10:22:35 -05:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogCurveGeometryGenerator::Riv3dWellLogCurveGeometryGenerator(RimWellPath* wellPath)
2018-03-21 10:22:35 -05:00
: m_wellPath(wellPath)
, m_planeWidth(0.0)
2018-03-21 10:22:35 -05:00
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createCurveDrawables(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
const Rim3dWellLogCurve* rim3dWellLogCurve,
double planeOffsetFromWellPathCenter,
double planeWidth)
{
std::vector<double> resultValues;
std::vector<double> resultMds;
rim3dWellLogCurve->curveValuesAndMds(&resultValues, &resultMds);
m_planeWidth = planeWidth;
// Make sure all drawables are cleared in case we return early to avoid a
// previous drawable being "stuck" when changing result type.
clearCurvePointsAndGeometry();
if (!wellPathGeometry()) return;
if (wellPathGeometry()->m_wellPathPoints.empty()) return;
if (!wellPathClipBoundingBox.isValid()) return;
if (resultValues.empty()) return;
2018-03-21 10:22:35 -05:00
CVF_ASSERT(resultValues.size() == resultMds.size());
if (rim3dWellLogCurve->maxCurveValue() - rim3dWellLogCurve->minCurveValue() < 1.0e-6)
{
return;
}
RimWellPathCollection* wellPathCollection = nullptr;
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
cvf::Vec3d clipLocation = wellPathGeometry()->m_wellPathPoints.front();
if (wellPathCollection->wellPathClip)
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
}
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
for (cvf::Vec3d& wellPathPoint : wellPathPoints)
{
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
}
std::vector<cvf::Vec3d> wellPathCurveNormals = RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, rim3dWellLogCurve->drawPlaneAngle());
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedCurveNormals;
2018-03-21 10:22:35 -05:00
// Iterate from bottom of well path and up to be able to stop at given Z max clipping height
for (auto md = resultMds.rbegin(); md != resultMds.rend(); md++)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathPoints, *md);
cvf::Vec3d normal = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathCurveNormals, *md);
if (point.z() > clipLocation.z()) break;
interpolatedWellPathPoints.push_back(point);
interpolatedCurveNormals.push_back(normal.getNormalized());
}
2018-03-21 10:22:35 -05:00
if (interpolatedWellPathPoints.empty()) return;
// Reverse list, since it was filled in the opposite order
2018-03-21 10:22:35 -05:00
std::reverse(interpolatedWellPathPoints.begin(), interpolatedWellPathPoints.end());
std::reverse(interpolatedCurveNormals.begin(), interpolatedCurveNormals.end());
// The result values for the part of the well which is not clipped off, matching interpolatedWellPathPoints size
m_curveValues = std::vector<double>(resultValues.end() - interpolatedWellPathPoints.size(),
resultValues.end());
m_curveMeasuredDepths = std::vector<double>(resultMds.end() - interpolatedWellPathPoints.size(),
resultMds.end());
double maxClampedResult = -HUGE_VAL;
double minClampedResult = HUGE_VAL;
for (double& result : m_curveValues)
{
if (!RigCurveDataTools::isValidValue(result, false)) continue;
result = cvf::Math::clamp(result, rim3dWellLogCurve->minCurveValue(), rim3dWellLogCurve->maxCurveValue());
maxClampedResult = std::max(result, maxClampedResult);
minClampedResult = std::min(result, minClampedResult);
}
if (minClampedResult >= maxClampedResult)
{
return;
}
m_curveVertices = std::vector<cvf::Vec3f>();
m_curveVertices.reserve(interpolatedWellPathPoints.size());
double plotRangeToResultRangeFactor = planeWidth / (maxClampedResult - minClampedResult);
for (size_t i = 0; i < interpolatedWellPathPoints.size(); i++)
{
double scaledResult = 0;
if (RigCurveDataTools::isValidValue(m_curveValues[i], false))
{
scaledResult =
planeOffsetFromWellPathCenter + (m_curveValues[i] - minClampedResult) * plotRangeToResultRangeFactor;
}
cvf::Vec3d curvePoint(interpolatedWellPathPoints[i] + scaledResult * interpolatedCurveNormals[i]);
m_curveVertices.push_back(cvf::Vec3f(curvePoint));
}
std::vector<cvf::uint> indices;
indices.reserve(interpolatedWellPathPoints.size());
for (size_t i = 0; i < m_curveValues.size() - 1; ++i)
{
if (RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
RigCurveDataTools::isValidValue(m_curveValues[i + 1], false))
{
indices.push_back(cvf::uint(i));
indices.push_back(cvf::uint(i + 1));
}
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(indices);
m_curveDrawable = new cvf::DrawableGeo();
indexedUInt->setIndices(indexArray.p());
m_curveDrawable->addPrimitiveSet(indexedUInt.p());
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_curveVertices);
m_curveDrawable->setVertexArray(vertexArray.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::clearCurvePointsAndGeometry()
{
m_curveDrawable = nullptr;
m_curveVertices.clear();
m_curveMeasuredDepths.clear();
m_curveValues.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogCurveGeometryGenerator::curveDrawable()
{
return m_curveDrawable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogCurveGeometryGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool Riv3dWellLogCurveGeometryGenerator::findClosestPointOnCurve(const cvf::Vec3d& globalIntersection,
cvf::Vec3d* closestPoint,
double* measuredDepthAtPoint,
double* valueAtClosestPoint) const
{
cvf::Vec3f globalIntersectionFloat(globalIntersection);
float closestDistance = m_planeWidth * 0.1;
*closestPoint = cvf::Vec3d::UNDEFINED;
*measuredDepthAtPoint = cvf::UNDEFINED_DOUBLE;
*valueAtClosestPoint = cvf::UNDEFINED_DOUBLE;
if (m_curveVertices.size() < 2u) false;
CVF_ASSERT(m_curveVertices.size() == m_curveValues.size());
for (size_t i = 1; i < m_curveVertices.size(); ++i)
{
bool validCurveSegment = RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
RigCurveDataTools::isValidValue(m_curveValues[i - 1], false);
if (validCurveSegment)
{
cvf::Vec3f a = m_curveVertices[i - 1];
cvf::Vec3f b = m_curveVertices[i];
cvf::Vec3f ap = globalIntersectionFloat - a;
cvf::Vec3f ab = b - a;
// Projected point is clamped to one of the end points of the segment.
float distanceToProjectedPointAlongAB = ap * ab / (ab * ab);
float clampedDistance = cvf::Math::clamp(distanceToProjectedPointAlongAB, 0.0f, 1.0f);
cvf::Vec3f projectionOfGlobalIntersection = a + clampedDistance * ab;
float distance = (projectionOfGlobalIntersection - globalIntersectionFloat).length();
if (distance < closestDistance)
{
*closestPoint = cvf::Vec3d(projectionOfGlobalIntersection);
closestDistance = distance;
*measuredDepthAtPoint = m_curveMeasuredDepths[i - 1] * (1.0f - clampedDistance) + m_curveMeasuredDepths[i] * clampedDistance;
*valueAtClosestPoint = m_curveValues[i - 1] * (1.0f - clampedDistance) + m_curveValues[i] * clampedDistance;
}
}
}
if (closestPoint->isUndefined())
return false;
return true;
}