ResInsight/ApplicationCode/ModelVisualization/RivElementVectorResultPartMgr.cpp

322 lines
12 KiB
C++
Raw Normal View History

2020-03-02 01:55:45 -06:00
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivElementVectorResultPartMgr.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimElementVectorResult.h"
#include "RimRegularLegendConfig.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigCell.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigMainGrid.h"
#include "cafEffectGenerator.h"
#include "cvfDrawableGeo.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfShaderProgram.h"
#include "cvfStructGrid.h"
#include "cvfStructGridGeometryGenerator.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivElementVectorResultPartMgr::RivElementVectorResultPartMgr( RimEclipseView* reservoirView )
{
m_rimReservoirView = reservoirView;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivElementVectorResultPartMgr::~RivElementVectorResultPartMgr()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::setTransform( cvf::Transform* scaleTransform )
{
m_scaleTransform = scaleTransform;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicList* model, size_t timeStepIndex )
{
CVF_ASSERT( model );
if ( m_rimReservoirView.isNull() ) return;
RimEclipseCase* eclipseCase = m_rimReservoirView->eclipseCase();
if ( !eclipseCase ) return;
RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
if ( !eclipseCaseData ) return;
RimElementVectorResult* result = m_rimReservoirView->elementVectorResult();
if ( !result ) return;
if ( !result->showResult() ) return;
std::vector<ElementVectorResultVisualization> tensorVisualizations;
double characteristicCellSize = eclipseCase->characteristicCellSize();
float arrowConstantScaling = 0.5 * result->sizeScale() * characteristicCellSize;
double min, max;
result->mappingRange( min, max );
double maxAbsResult = 1.0;
if ( min != cvf::UNDEFINED_DOUBLE && max != cvf::UNDEFINED_DOUBLE )
{
maxAbsResult = std::max( cvf::Math::abs( max ), cvf::Math::abs( min ) );
}
float arrowScaling = arrowConstantScaling;
if ( result->scaleMethod() == RimElementVectorResult::RESULT )
{
arrowScaling = arrowConstantScaling / maxAbsResult;
}
std::vector<RigEclipseResultAddress> addresses;
result->resultAddressIJK( addresses );
std::vector<cvf::StructGridInterface::FaceType> directions;
std::vector<RigEclipseResultAddress> resultAddresses;
if ( result->showVectorI() )
{
directions.push_back( cvf::StructGridInterface::POS_I );
resultAddresses.push_back( addresses[0] );
}
if ( result->showVectorJ() )
{
directions.push_back( cvf::StructGridInterface::POS_J );
resultAddresses.push_back( addresses[1] );
}
if ( result->showVectorK() )
{
directions.push_back( cvf::StructGridInterface::POS_K );
resultAddresses.push_back( addresses[2] );
}
RigCaseCellResultsData* resultsData = eclipseCaseData->results( RiaDefines::MATRIX_MODEL );
RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo( RiaDefines::MATRIX_MODEL );
const cvf::Vec3d offset = eclipseCase->mainGrid()->displayModelOffset();
const std::vector<RigCell>& cells = eclipseCase->mainGrid()->globalCellArray();
for ( int gcIdx = 0; gcIdx < static_cast<int>( cells.size() ); ++gcIdx )
{
if ( !cells[gcIdx].isInvalid() && activeCellInfo->isActive( gcIdx ) )
{
for ( int dir = 0; dir < static_cast<int>( directions.size() ); dir++ )
{
size_t resultIdx = activeCellInfo->cellResultIndex( gcIdx );
double resultValue = resultsData->cellScalarResults( resultAddresses[dir], timeStepIndex ).at( resultIdx );
if ( std::abs( resultValue ) >= result->threshold() )
{
cvf::Vec3d faceCenter = cells[gcIdx].faceCenter( directions[dir] ) - offset;
cvf::Vec3d cellCenter = cells[gcIdx].center() - offset;
cvf::Vec3d faceNormal = ( faceCenter - cellCenter ).getNormalized() * arrowScaling;
if ( result->scaleMethod() == RimElementVectorResult::RESULT )
{
faceNormal *= std::abs( resultValue );
}
tensorVisualizations.push_back(
ElementVectorResultVisualization( faceCenter, faceNormal, resultValue ) );
}
}
}
}
if ( !tensorVisualizations.empty() )
{
cvf::ref<cvf::Part> partIdx = createPart( *result, tensorVisualizations );
partIdx->setTransform( m_scaleTransform.p() );
partIdx->updateBoundingBox();
model->addPart( partIdx.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part>
RivElementVectorResultPartMgr::createPart( const RimElementVectorResult& result,
const std::vector<ElementVectorResultVisualization>& tensorVisualizations ) const
{
std::vector<uint> indices;
indices.reserve( tensorVisualizations.size() * 5 );
std::vector<cvf::Vec3f> vertices;
vertices.reserve( tensorVisualizations.size() * 5 );
uint counter = 0;
for ( ElementVectorResultVisualization tensor : tensorVisualizations )
{
for ( const cvf::Vec3f& vertex : createArrowVertices( tensor ) )
{
vertices.push_back( vertex );
}
for ( const uint& index : createArrowIndices( counter ) )
{
indices.push_back( index );
}
counter += 5;
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray( indices );
cvf::ref<cvf::DrawableGeo> drawable = new cvf::DrawableGeo();
indexedUInt->setIndices( indexArray.p() );
drawable->addPrimitiveSet( indexedUInt.p() );
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( vertices );
drawable->setVertexArray( vertexArray.p() );
cvf::ref<cvf::Vec2fArray> lineTexCoords = const_cast<cvf::Vec2fArray*>( drawable->textureCoordArray() );
if ( lineTexCoords.isNull() )
{
lineTexCoords = new cvf::Vec2fArray;
}
const cvf::ScalarMapper* activeScalerMapper = nullptr;
cvf::ref<cvf::Effect> effect;
auto vectorColors = result.vectorColors();
if ( vectorColors == RimElementVectorResult::RESULT_COLORS )
{
activeScalerMapper = result.legendConfig()->scalarMapper();
createResultColorTextureCoords( lineTexCoords.p(), tensorVisualizations, activeScalerMapper );
caf::ScalarMapperMeshEffectGenerator meshEffGen( activeScalerMapper );
effect = meshEffGen.generateCachedEffect();
}
else
{
caf::SurfaceEffectGenerator surfaceGen( result.getUniformVectorColor(), caf::PO_1 );
surfaceGen.enableLighting( !m_rimReservoirView->isLightingDisabled() );
effect = surfaceGen.generateCachedEffect();
}
drawable->setTextureCoordArray( lineTexCoords.p() );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setDrawable( drawable.p() );
part->setEffect( effect.p() );
return part;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::createResultColorTextureCoords(
cvf::Vec2fArray* textureCoords,
const std::vector<ElementVectorResultVisualization>& elementVectorResultVisualizations,
const cvf::ScalarMapper* mapper )
{
CVF_ASSERT( textureCoords );
CVF_ASSERT( mapper );
size_t vertexCount = elementVectorResultVisualizations.size() * 5;
if ( textureCoords->size() != vertexCount ) textureCoords->reserve( vertexCount );
for ( auto evrViz : elementVectorResultVisualizations )
{
for ( size_t vxIdx = 0; vxIdx < 5; ++vxIdx )
{
cvf::Vec2f texCoord = mapper->mapToTextureCoord( evrViz.result );
textureCoords->add( texCoord );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<cvf::Vec3f, 5>
RivElementVectorResultPartMgr::createArrowVertices( const ElementVectorResultVisualization& evrViz ) const
{
std::array<cvf::Vec3f, 5> vertices;
cvf::Vec3f headTop = evrViz.faceCenter + evrViz.faceNormal;
cvf::Vec3f shaftStart = evrViz.faceCenter;
// Flip arrow for negative results
if ( evrViz.result < 0 )
{
std::swap( headTop, shaftStart );
}
float headWidth = 0.05 * evrViz.faceNormal.length();
cvf::Vec3f headBottom = headTop - ( headTop - shaftStart ) * 0.2f;
cvf::Vec3f headBottomDirection = evrViz.faceNormal ^ evrViz.faceCenter;
cvf::Vec3f arrowBottomSegment = headBottomDirection.getNormalized() * headWidth;
vertices[0] = shaftStart;
vertices[1] = headBottom;
vertices[2] = headBottom + arrowBottomSegment;
vertices[3] = headBottom - arrowBottomSegment;
vertices[4] = headTop;
return vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 8> RivElementVectorResultPartMgr::createArrowIndices( uint startIndex ) const
{
std::array<uint, 8> indices;
indices[0] = startIndex;
indices[1] = startIndex + 1;
indices[2] = startIndex + 2;
indices[3] = startIndex + 3;
indices[4] = startIndex + 3;
indices[5] = startIndex + 4;
indices[6] = startIndex + 4;
indices[7] = startIndex + 2;
return indices;
}