ResInsight/ApplicationLibCode/UnitTests/RiaWeightedHarmonicMeanCalculator-Test.cpp

75 lines
2.5 KiB
C++
Raw Normal View History

#include "gtest/gtest.h"
#include "RiaWeightedHarmonicMeanCalculator.h"
#include <cmath>
#include <numeric>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaWeightedHarmonicMeanCalculator, BasicUsage )
{
{
RiaWeightedHarmonicMeanCalculator calc;
EXPECT_DOUBLE_EQ( 0.0, calc.aggregatedWeight() );
EXPECT_FALSE( calc.validAggregatedWeight() );
}
{
RiaWeightedHarmonicMeanCalculator calc;
2020-11-06 03:46:38 -06:00
std::vector<double> values{ 1, 4, 4 };
std::vector<double> weights{ 1, 1, 1 };
for ( size_t i = 0; i < values.size(); i++ )
{
calc.addValueAndWeight( values[i], weights[i] );
}
double expectedValue = 2.0;
EXPECT_DOUBLE_EQ( 3.0, calc.aggregatedWeight() );
EXPECT_NEAR( expectedValue, calc.weightedMean(), 1e-10 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaWeightedHarmonicMeanCalculator, WeightedValues )
{
{
RiaWeightedHarmonicMeanCalculator calc;
2020-11-06 03:46:38 -06:00
std::vector<double> values{ 10, 5, 4, 3 };
std::vector<double> weights{ 10, 5, 4, 3 };
for ( size_t i = 0; i < values.size(); i++ )
{
calc.addValueAndWeight( values[i], weights[i] );
}
double sumWeights = std::accumulate( weights.begin(), weights.end(), 0.0 );
EXPECT_DOUBLE_EQ( sumWeights, calc.aggregatedWeight() );
EXPECT_NEAR( sumWeights / weights.size(), calc.weightedMean(), 1e-8 );
}
{
RiaWeightedHarmonicMeanCalculator calc;
2020-11-06 03:46:38 -06:00
std::vector<double> values{ 2.0, 3.0, 1.0, 4.0 };
std::vector<double> weights{ 1.0, 2.0, 7.0, 3.0 };
for ( size_t i = 0; i < values.size(); i++ )
{
calc.addValueAndWeight( values[i], weights[i] );
}
double sumWeights = std::accumulate( weights.begin(), weights.end(), 0.0 );
double aggregatedWeightAndValues = 1.0 / 2.0 + 2.0 / 3.0 + 7.0 / 1.0 + 3.0 / 4.0;
double expectedValue = sumWeights / aggregatedWeightAndValues;
EXPECT_DOUBLE_EQ( sumWeights, calc.aggregatedWeight() );
EXPECT_NEAR( expectedValue, calc.weightedMean(), 1.0e-8 );
}
}