ResInsight/ApplicationCode/ReservoirDataModel/RigCaseToCaseCellMapperTools.cpp

493 lines
22 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCaseToCaseCellMapper.h"
#include "RigCaseToCaseCellMapperTools.h"
#include "RigFemPart.h"
#include "RigMainGrid.h"
#include "RigFemPartGrid.h"
//==================================================================================================
///
//==================================================================================================
class RigNeighborCornerFinder
{
public:
RigNeighborCornerFinder(const RigMainGrid* mainGrid, size_t baseI, size_t baseJ, size_t baseK)
: m_mainGrid(mainGrid),
m_baseI(baseI),
m_baseJ(baseJ),
m_baseK(baseK)
{}
const std::array<size_t, 8>* neighborIndices(int offsetI, int offsetJ, int offsetK)
{
2018-02-18 11:56:43 -06:00
if (offsetI < 0 && m_baseI == 0) return nullptr;
if (offsetJ < 0 && m_baseJ == 0) return nullptr;
if (offsetK < 0 && m_baseK == 0) return nullptr;
if (offsetI > 0 && m_baseI == m_mainGrid->cellCountI()-1) return nullptr;
if (offsetJ > 0 && m_baseJ == m_mainGrid->cellCountJ()-1) return nullptr;
if (offsetK > 0 && m_baseK == m_mainGrid->cellCountK()-1) return nullptr;
size_t gridLocalCellIndex = m_mainGrid->cellIndexFromIJK(m_baseI + offsetI, m_baseJ + offsetJ, m_baseK + offsetK);
2015-11-24 07:21:02 -06:00
const RigCell& cell = m_mainGrid->globalCellArray()[gridLocalCellIndex];
return &(cell.cornerIndices());
}
private:
const RigMainGrid* m_mainGrid;
size_t m_baseI;
size_t m_baseJ;
size_t m_baseK;
};
//==================================================================================================
///
//==================================================================================================
//--------------------------------------------------------------------------------------------------
/// Average of neighbor corresponding nodes
//--------------------------------------------------------------------------------------------------
void RigCaseToCaseCellMapperTools::estimatedFemCellFromEclCell(const RigMainGrid* eclGrid, size_t reservoirCellIndex, cvf::Vec3d estimatedElmCorners[8])
{
CVF_TIGHT_ASSERT(reservoirCellIndex < eclGrid->cellCount()); // Assume reservoirCellIdx == localGridCellIdx for maingrid
const std::vector<cvf::Vec3d>& eclNodes = eclGrid->nodes();
size_t I,J,K;
eclGrid->ijkFromCellIndex(reservoirCellIndex, &I, &J, &K);
RigNeighborCornerFinder nbFinder(eclGrid, I,J,K);
// Cell corner Averaging mapping: Local cell index in neighbor matching specific corner of this cell
// N - Negative P - positive
// 0 <- NI[1] NINJ[2] NJ[3] NK[4] NINK[5] NINJNK[6] NJNK[7]
// 1 <- NJ[2] PINJ[3] PI[0] NK[5] NJNK[6] PINJNK[7] PINK[4]
// 2 <- PI[3] PIPJ[0] PJ[1] NK[6] PINK[7] PIPJNK[4] PJNK[5]
// 3 <- PJ[0] NIPJ[1] NI[2] NK[7] PJNK[4] NIPJNK[5] NINK[6]
// 4 <- NI[5] NINJ[6] NJ[7] PK[0] NIPK[1] NINJPK[2] NJPK[3]
// 5 <- NJ[6] PINJ[7] PI[4] PK[1] NJPK[2] PINJPK[3] PIPK[0]
// 6 <- PI[7] PIPJ[4] PJ[5] PK[2] PIPK[3] PIPJPK[0] PJPK[1]
// 7 <- PJ[4] NIPJ[5] NI[6] PK[3] PJPK[0] NIPJPK[1] NIPK[2]
const std::array<size_t, 8>* IJK = nbFinder.neighborIndices( 0, 0, 0);
const std::array<size_t, 8>* NI = nbFinder.neighborIndices(-1, 0, 0);
const std::array<size_t, 8>* NJ = nbFinder.neighborIndices( 0,-1, 0);
const std::array<size_t, 8>* PI = nbFinder.neighborIndices( 1, 0, 0);
const std::array<size_t, 8>* PJ = nbFinder.neighborIndices( 0, 1, 0);
const std::array<size_t, 8>* NK = nbFinder.neighborIndices( 0, 0,-1);
const std::array<size_t, 8>* PK = nbFinder.neighborIndices( 0, 0, 1);
const std::array<size_t, 8>* NINJ = nbFinder.neighborIndices(-1,-1, 0);
const std::array<size_t, 8>* PINJ = nbFinder.neighborIndices( 1,-1, 0);
const std::array<size_t, 8>* PIPJ = nbFinder.neighborIndices( 1, 1, 0);
const std::array<size_t, 8>* NIPJ = nbFinder.neighborIndices(-1, 1, 0);
const std::array<size_t, 8>* NINK = nbFinder.neighborIndices(-1, 0,-1);
const std::array<size_t, 8>* NJNK = nbFinder.neighborIndices( 0,-1,-1);
const std::array<size_t, 8>* PINK = nbFinder.neighborIndices( 1, 0,-1);
const std::array<size_t, 8>* PJNK = nbFinder.neighborIndices( 0, 1,-1);
const std::array<size_t, 8>* NIPK = nbFinder.neighborIndices(-1, 0, 1);
const std::array<size_t, 8>* NJPK = nbFinder.neighborIndices( 0,-1, 1);
const std::array<size_t, 8>* PIPK = nbFinder.neighborIndices( 1, 0, 1);
const std::array<size_t, 8>* PJPK = nbFinder.neighborIndices( 0, 1, 1);
const std::array<size_t, 8>* NINJNK = nbFinder.neighborIndices(-1,-1,-1);
const std::array<size_t, 8>* PINJNK = nbFinder.neighborIndices( 1,-1,-1);
const std::array<size_t, 8>* PIPJNK = nbFinder.neighborIndices( 1, 1,-1);
const std::array<size_t, 8>* NIPJNK = nbFinder.neighborIndices(-1, 1,-1);
const std::array<size_t, 8>* NINJPK = nbFinder.neighborIndices(-1,-1, 1);
const std::array<size_t, 8>* PINJPK = nbFinder.neighborIndices( 1,-1, 1);
const std::array<size_t, 8>* PIPJPK = nbFinder.neighborIndices( 1, 1, 1);
const std::array<size_t, 8>* NIPJPK = nbFinder.neighborIndices(-1, 1, 1);
std::vector<size_t> contributingNodeIndicesPrCellCorner[8];
if (IJK ) contributingNodeIndicesPrCellCorner[0].push_back((*IJK )[0]);
if (NI ) contributingNodeIndicesPrCellCorner[0].push_back((*NI )[1]);
if (NINJ ) contributingNodeIndicesPrCellCorner[0].push_back((*NINJ )[2]);
if (NJ ) contributingNodeIndicesPrCellCorner[0].push_back((*NJ )[3]);
if (NK ) contributingNodeIndicesPrCellCorner[0].push_back((*NK )[4]);
if (NINK ) contributingNodeIndicesPrCellCorner[0].push_back((*NINK )[5]);
if (NINJNK) contributingNodeIndicesPrCellCorner[0].push_back((*NINJNK)[6]);
if (NJNK ) contributingNodeIndicesPrCellCorner[0].push_back((*NJNK )[7]);
if (IJK ) contributingNodeIndicesPrCellCorner[1].push_back((*IJK )[1]);
if (NJ ) contributingNodeIndicesPrCellCorner[1].push_back((*NJ )[2]);
if (PINJ ) contributingNodeIndicesPrCellCorner[1].push_back((*PINJ )[3]);
if (PI ) contributingNodeIndicesPrCellCorner[1].push_back((*PI )[0]);
if (NK ) contributingNodeIndicesPrCellCorner[1].push_back((*NK )[5]);
if (NJNK ) contributingNodeIndicesPrCellCorner[1].push_back((*NJNK )[6]);
if (PINJNK) contributingNodeIndicesPrCellCorner[1].push_back((*PINJNK)[7]);
if (PINK ) contributingNodeIndicesPrCellCorner[1].push_back((*PINK )[4]);
if (IJK ) contributingNodeIndicesPrCellCorner[2].push_back((*IJK )[2]);
if (PI ) contributingNodeIndicesPrCellCorner[2].push_back((*PI )[3]);
if (PIPJ ) contributingNodeIndicesPrCellCorner[2].push_back((*PIPJ )[0]);
if (PJ ) contributingNodeIndicesPrCellCorner[2].push_back((*PJ )[1]);
if (NK ) contributingNodeIndicesPrCellCorner[2].push_back((*NK )[6]);
if (PINK ) contributingNodeIndicesPrCellCorner[2].push_back((*PINK )[7]);
if (PIPJNK) contributingNodeIndicesPrCellCorner[2].push_back((*PIPJNK)[4]);
if (PJNK ) contributingNodeIndicesPrCellCorner[2].push_back((*PJNK )[5]);
if (IJK ) contributingNodeIndicesPrCellCorner[3].push_back((*IJK )[3]);
if (PJ ) contributingNodeIndicesPrCellCorner[3].push_back((*PJ )[0]);
if (NIPJ ) contributingNodeIndicesPrCellCorner[3].push_back((*NIPJ )[1]);
if (NI ) contributingNodeIndicesPrCellCorner[3].push_back((*NI )[2]);
if (NK ) contributingNodeIndicesPrCellCorner[3].push_back((*NK )[7]);
if (PJNK ) contributingNodeIndicesPrCellCorner[3].push_back((*PJNK )[4]);
if (NIPJNK) contributingNodeIndicesPrCellCorner[3].push_back((*NIPJNK)[5]);
if (NINK ) contributingNodeIndicesPrCellCorner[3].push_back((*NINK )[6]);
// 4 <- NI[5] NINJ[6] NJ[7] PK[0] NIPK[1] NINJPK[2] NJPK[3]
if (IJK ) contributingNodeIndicesPrCellCorner[4].push_back((*IJK )[4]);
if (NI ) contributingNodeIndicesPrCellCorner[4].push_back((*NI )[5]);
if (NINJ ) contributingNodeIndicesPrCellCorner[4].push_back((*NINJ )[6]);
if (NJ ) contributingNodeIndicesPrCellCorner[4].push_back((*NJ )[7]);
if (PK ) contributingNodeIndicesPrCellCorner[4].push_back((*PK )[0]);
if (NIPK ) contributingNodeIndicesPrCellCorner[4].push_back((*NIPK )[1]);
if (NINJPK) contributingNodeIndicesPrCellCorner[4].push_back((*NINJPK)[2]);
if (NJPK ) contributingNodeIndicesPrCellCorner[4].push_back((*NJPK )[3]);
if (IJK ) contributingNodeIndicesPrCellCorner[5].push_back((*IJK )[5]);
if (NJ ) contributingNodeIndicesPrCellCorner[5].push_back((*NJ )[6]);
if (PINJ ) contributingNodeIndicesPrCellCorner[5].push_back((*PINJ )[7]);
if (PI ) contributingNodeIndicesPrCellCorner[5].push_back((*PI )[4]);
if (PK ) contributingNodeIndicesPrCellCorner[5].push_back((*PK )[1]);
if (NJPK ) contributingNodeIndicesPrCellCorner[5].push_back((*NJPK )[2]);
if (PINJPK) contributingNodeIndicesPrCellCorner[5].push_back((*PINJPK)[3]);
if (PIPK ) contributingNodeIndicesPrCellCorner[5].push_back((*PIPK )[0]);
// 6 <- PI[7] PIPJ[4] PJ[5] PK[2] PIPK[3] PIPJPK[0] PJPK[1]
if (IJK ) contributingNodeIndicesPrCellCorner[6].push_back((*IJK )[6]);
if (PI ) contributingNodeIndicesPrCellCorner[6].push_back((*PI )[7]);
if (PIPJ ) contributingNodeIndicesPrCellCorner[6].push_back((*PIPJ )[4]);
if (PJ ) contributingNodeIndicesPrCellCorner[6].push_back((*PJ )[5]);
if (PK ) contributingNodeIndicesPrCellCorner[6].push_back((*PK )[2]);
if (PIPK ) contributingNodeIndicesPrCellCorner[6].push_back((*PIPK )[3]);
if (PIPJPK) contributingNodeIndicesPrCellCorner[6].push_back((*PIPJPK)[0]);
if (PJPK ) contributingNodeIndicesPrCellCorner[6].push_back((*PJPK )[1]);
if (IJK ) contributingNodeIndicesPrCellCorner[7].push_back((*IJK )[7]);
if (PJ ) contributingNodeIndicesPrCellCorner[7].push_back((*PJ )[4]);
if (NIPJ ) contributingNodeIndicesPrCellCorner[7].push_back((*NIPJ )[5]);
if (NI ) contributingNodeIndicesPrCellCorner[7].push_back((*NI )[6]);
if (PK ) contributingNodeIndicesPrCellCorner[7].push_back((*PK )[3]);
if (PJPK ) contributingNodeIndicesPrCellCorner[7].push_back((*PJPK )[0]);
if (NIPJPK) contributingNodeIndicesPrCellCorner[7].push_back((*NIPJPK)[1]);
if (NIPK ) contributingNodeIndicesPrCellCorner[7].push_back((*NIPK )[2]);
// Average the nodes
for (size_t cornIdx = 0; cornIdx < 8; ++cornIdx)
{
estimatedElmCorners[cornIdx] = cvf::Vec3d::ZERO;
size_t contribCount = contributingNodeIndicesPrCellCorner[cornIdx].size();
for (size_t ctnIdx = 0; ctnIdx < contribCount; ++ctnIdx)
{
estimatedElmCorners[cornIdx] += eclNodes[contributingNodeIndicesPrCellCorner[cornIdx][ctnIdx]];
}
estimatedElmCorners[cornIdx] /= contribCount;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseToCaseCellMapperTools::rotateQuad(cvf::Vec3d quad[4], int idxToNewStart)
{
if (idxToNewStart == 0) return;
cvf::Vec3d tmpQuad[4];
tmpQuad[0] = quad[0];
tmpQuad[1] = quad[1];
tmpQuad[2] = quad[2];
tmpQuad[3] = quad[3];
quad[0] = tmpQuad[idxToNewStart];
++idxToNewStart; if (idxToNewStart > 3) idxToNewStart = 0;
quad[1] = tmpQuad[idxToNewStart];
++idxToNewStart; if (idxToNewStart > 3) idxToNewStart = 0;
quad[2] = tmpQuad[idxToNewStart];
++idxToNewStart; if (idxToNewStart > 3) idxToNewStart = 0;
quad[3] = tmpQuad[idxToNewStart];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseToCaseCellMapperTools::flipQuadWinding(cvf::Vec3d quad[4])
{
cvf::Vec3d temp = quad[1];
quad[1] = quad[3];
quad[3] = temp;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RigCaseToCaseCellMapperTools::quadVxClosestToXYOfPoint( const cvf::Vec3d point, const cvf::Vec3d quad[4])
{
double minSqDist = HUGE_VAL;
int quadVxIdxClosestToPoint = cvf::UNDEFINED_INT;
for (int i = 0; i < 4; ++i)
{
cvf::Vec3d diff = quad[i]- point;
diff[2] = 0.0;
double sqDist = diff.lengthSquared();
if (sqDist < minSqDist)
{
minSqDist = sqDist;
quadVxIdxClosestToPoint = i;
}
}
return quadVxIdxClosestToPoint;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseToCaseCellMapperTools::elementCorners(const RigFemPart* femPart, int elmIdx, cvf::Vec3d elmCorners[8])
{
RigElementType elmType = femPart->elementType(elmIdx);
if (!(elmType == HEX8 || elmType == HEX8P)) return false;
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
const int* cornerIndices = femPart->connectivities(elmIdx);
elmCorners[0] = cvf::Vec3d(nodeCoords[cornerIndices[0]]);
elmCorners[1] = cvf::Vec3d(nodeCoords[cornerIndices[1]]);
elmCorners[2] = cvf::Vec3d(nodeCoords[cornerIndices[2]]);
elmCorners[3] = cvf::Vec3d(nodeCoords[cornerIndices[3]]);
elmCorners[4] = cvf::Vec3d(nodeCoords[cornerIndices[4]]);
elmCorners[5] = cvf::Vec3d(nodeCoords[cornerIndices[5]]);
elmCorners[6] = cvf::Vec3d(nodeCoords[cornerIndices[6]]);
elmCorners[7] = cvf::Vec3d(nodeCoords[cornerIndices[7]]);
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RigCaseToCaseCellMapperTools::findMatchingPOSKFaceIdx(const cvf::Vec3d baseCell[8],bool isBaseCellNormalsOutwards, const cvf::Vec3d c2[8])
{
int faceNodeCount;
const int* posKFace = RigFemTypes::localElmNodeIndicesForFace(HEX8, (int)(cvf::StructGridInterface::POS_K), &faceNodeCount);
double sign = isBaseCellNormalsOutwards ? 1.0 : -1.0;
cvf::Vec3d posKnormal = sign*(baseCell[posKFace[2]] - baseCell[posKFace[0]]) ^ (baseCell[posKFace[3]] - baseCell[posKFace[1]]);
posKnormal.normalize();
double minDiff = HUGE_VAL;
int bestFace = -1;
for (int faceIdx = 5; faceIdx >= 0; --faceIdx) // Backwards. might hit earlier more often
{
const int* face = RigFemTypes::localElmNodeIndicesForFace(HEX8, faceIdx, &faceNodeCount);
cvf::Vec3d normal = (c2[face[2]] - c2[face[0]]) ^ (c2[face[3]] - c2[face[1]]);
normal.normalize();
double sqDiff = (posKnormal-normal).lengthSquared();
if (sqDiff < minDiff)
{
minDiff = sqDiff;
bestFace = faceIdx;
if (minDiff < 0.1*0.1) break; // This must be the one. Do not search further
}
}
return bestFace;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseToCaseCellMapperTools::isEclFemCellsMatching(const cvf::Vec3d baseCell[8],
cvf::Vec3d cell[8],
double xyTolerance, double zTolerance)
{
bool isMatching = true;
for (int i = 0; i < 4 ; ++i)
{
cvf::Vec3d diff = cell[i] - baseCell[i];
if (!(fabs(diff.x()) < xyTolerance && fabs(diff.y()) < xyTolerance && fabs(diff.z()) < zTolerance))
{
isMatching = false;
break;
}
}
return isMatching;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseToCaseCellMapperTools::rotateCellTopologicallyToMatchBaseCell(const cvf::Vec3d * baseCell, bool baseCellFaceNormalsIsOutwards, cvf::Vec3d * cell)
{
int femDeepZFaceIdx = findMatchingPOSKFaceIdx(baseCell, baseCellFaceNormalsIsOutwards, cell);
{
cvf::Vec3d tmpFemCorners[8];
tmpFemCorners[0] = cell[0];
tmpFemCorners[1] = cell[1];
tmpFemCorners[2] = cell[2];
tmpFemCorners[3] = cell[3];
tmpFemCorners[4] = cell[4];
tmpFemCorners[5] = cell[5];
tmpFemCorners[6] = cell[6];
tmpFemCorners[7] = cell[7];
int femShallowZFaceIdx = RigFemTypes::oppositeFace(HEX8, femDeepZFaceIdx);
int faceNodeCount;
const int* localElmNodeIndicesForPOSKFace = RigFemTypes::localElmNodeIndicesForFace(HEX8, femDeepZFaceIdx, &faceNodeCount);
const int* localElmNodeIndicesForNEGKFace = RigFemTypes::localElmNodeIndicesForFace(HEX8, femShallowZFaceIdx, &faceNodeCount);
cell[0] = tmpFemCorners[localElmNodeIndicesForNEGKFace[0]];
cell[1] = tmpFemCorners[localElmNodeIndicesForNEGKFace[1]];
cell[2] = tmpFemCorners[localElmNodeIndicesForNEGKFace[2]];
cell[3] = tmpFemCorners[localElmNodeIndicesForNEGKFace[3]];
cell[4] = tmpFemCorners[localElmNodeIndicesForPOSKFace[0]];
cell[5] = tmpFemCorners[localElmNodeIndicesForPOSKFace[1]];
cell[6] = tmpFemCorners[localElmNodeIndicesForPOSKFace[2]];
cell[7] = tmpFemCorners[localElmNodeIndicesForPOSKFace[3]];
}
cvf::Vec3d* femDeepestQuad = &(cell[4]);
cvf::Vec3d* femShallowQuad = &(cell[0]);
// Now the top/bottom have opposite winding. To make the comparisons and index rotations simpler
// flip the winding of the top or bottom face depending on whether the eclipse grid is inside-out
if (baseCellFaceNormalsIsOutwards)
{
flipQuadWinding(femShallowQuad);
}
else
{
flipQuadWinding(femDeepestQuad);
}
// We now need to rotate the fem quads to be alligned with the ecl quads
// Since the start point of the quad always is aligned with the opposite face-quad start
// we can find the rotation for the top, and apply it to both top and bottom
int femQuadStartIdx = quadVxClosestToXYOfPoint(baseCell[0], femShallowQuad);
rotateQuad(femDeepestQuad, femQuadStartIdx);
rotateQuad(femShallowQuad, femQuadStartIdx);
}
#if 0 // Inside Bounding box test
cvf::BoundingBox cellBBox;
for (int i = 0; i < 8 ; ++i) cellBBox.add(cellCorners[i]);
cvf::Vec3d cs = cellBBox.min();
cvf::Vec3d cl = cellBBox.max();
cvf::Vec3d es = elmBBox.min();
cvf::Vec3d el = elmBBox.max();
if ( ( (cs.x() + xyTolerance) >= es.x() && (cl.x() - xyTolerance) <= el.x())
&& ( (cs.y() + xyTolerance) >= es.y() && (cl.y() - xyTolerance) <= el.y())
&& ( (cs.z() + zTolerance ) >= es.z() && (cl.z() - zTolerance ) <= el.z()) )
{
// Cell bb equal or inside Elm bb
isMatching = true;
}
if ( ( (es.x() + xyTolerance) >= cs.x() && (el.x() - xyTolerance) <= cl.x())
&& ( (es.y() + xyTolerance) >= cs.y() && (el.y() - xyTolerance) <= cl.y())
&& ( (es.z() + zTolerance ) >= cs.z() && (el.z() - zTolerance ) <= cl.z()) )
{
// Elm bb equal or inside Cell bb
isMatching = true;
}
#endif
#if 0
{
const std::vector<cvf::Vec3d>& eclNodes = eclGrid->nodes();
const RigCell& cell = eclGrid->cells()[reservoirCellIndex];
const std::array<size_t, 8>& cornerIndices = cell.cornerIndices();
int faceNodeCount;
const int* localElmNodeIndicesForTopZFace = RigFemTypes::localElmNodeIndicesForFace(HEX8, 4, &faceNodeCount);
const int* localElmNodeIndicesForBotZFace = RigFemTypes::localElmNodeIndicesForFace(HEX8, 5, &faceNodeCount);
eclDeepestQuad[0] = eclNodes[cornerIndices[localElmNodeIndicesForTopZFace[0]]];
eclDeepestQuad[1] = eclNodes[cornerIndices[localElmNodeIndicesForTopZFace[1]]];
eclDeepestQuad[2] = eclNodes[cornerIndices[localElmNodeIndicesForTopZFace[2]]];
eclDeepestQuad[3] = eclNodes[cornerIndices[localElmNodeIndicesForTopZFace[3]]];
eclShallowQuad[0] = eclNodes[cornerIndices[localElmNodeIndicesForBotZFace[0]]];
eclShallowQuad[1] = eclNodes[cornerIndices[localElmNodeIndicesForBotZFace[1]]];
eclShallowQuad[2] = eclNodes[cornerIndices[localElmNodeIndicesForBotZFace[2]]];
eclShallowQuad[3] = eclNodes[cornerIndices[localElmNodeIndicesForBotZFace[3]]];
}
#endif
#if 0
// First search K=1 diagonally for a seed cell; A cell without collapsings, and without faults
size_t minIJCount = masterEclGrid->cellCountI();
if (minIJCount > masterEclGrid->cellCountJ())
minIJCount = masterEclGrid->cellCountJ();
for (size_t ij = 0; ij < minIJCount; ++ij )
{
size_t localCellIdx = masterEclGrid->cellIndexFromIJK(ij, ij, 0);
size_t reservoirCellIdx = masterEclGrid->reservoirCellIndex(localCellIdx);
cvf::Vec3d vertices[8];
masterEclGrid->cellCornerVertices(localCellIdx, vertices);
if (!isCellNormal(vertices))
continue;
const RigFault* fault = masterEclGrid->findFaultFromCellIndexAndCellFace(reservoirCellIdx, cvf::StructGridInterface::POS_I);
}
#endif
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigCaseToCaseCellMapperTools::calculateCellCenter(cvf::Vec3d elmCorners[8])
{
cvf::Vec3d avg(cvf::Vec3d::ZERO);
size_t i;
for (i = 0; i < 8; i++)
{
avg += elmCorners[i];
}
avg /= 8.0;
return avg;
}