ResInsight/ApplicationCode/ReservoirDataModel/RigWellPathGeometryTools.cpp

341 lines
12 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
2019-01-09 08:21:38 -06:00
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellPathGeometryTools.h"
#include "RigWellPath.h"
#include "cvfMath.h"
#include "cvfMatrix3.h"
2019-08-30 08:23:11 -05:00
#include <QDebug>
#include <algorithm>
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigWellPathGeometryTools::calculateLineSegmentNormals(const std::vector<cvf::Vec3d>& vertices,
double planeAngle)
{
std::vector<cvf::Vec3d> pointNormals;
if (vertices.empty()) return pointNormals;
pointNormals.reserve(vertices.size());
const cvf::Vec3d up(0, 0, 1);
const cvf::Vec3d rotatedUp = up.getTransformedVector(cvf::Mat3d::fromRotation(cvf::Vec3d(0.0, 1.0, 0.0), planeAngle));
const cvf::Vec3d dominantDirection = estimateDominantDirectionInXYPlane(vertices);
const cvf::Vec3d projectionPlaneNormal = (up ^ dominantDirection).getNormalized();
CVF_ASSERT(projectionPlaneNormal * dominantDirection <= std::numeric_limits<double>::epsilon());
double sumDotWithRotatedUp = 0.0;
for (size_t i = 0; i < vertices.size() - 1; ++i)
{
cvf::Vec3d p1 = vertices[i];
cvf::Vec3d p2 = vertices[i + 1];
cvf::Vec3d tangent = (p2 - p1).getNormalized();
cvf::Vec3d normal(0, 0, 0);
if (cvf::Math::abs(tangent * projectionPlaneNormal) < 0.7071)
{
cvf::Vec3d projectedTangent = (tangent - (tangent * projectionPlaneNormal) * projectionPlaneNormal).getNormalized();
normal = (projectedTangent ^ projectionPlaneNormal).getNormalized();
normal = normal.getTransformedVector(cvf::Mat3d::fromRotation(tangent, planeAngle));
}
pointNormals.push_back(normal);
sumDotWithRotatedUp += normal * rotatedUp;
}
pointNormals.push_back(pointNormals.back());
if (sumDotWithRotatedUp < 0.0)
{
for (cvf::Vec3d& normal : pointNormals)
{
normal *= -1.0;
}
}
return interpolateUndefinedNormals(up, pointNormals, vertices);
}
2019-08-28 09:00:01 -05:00
//--------------------------------------------------------------------------------------------------
/// Lets you estimate MD values from an existing md/tvd relationship and a new set of TVD-values
/// Requires the points to be ordered from the start/top of the well path to the end/bottom.
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellPathGeometryTools::interpolateMdFromTvd(const std::vector<double>& originalMdValues, const std::vector<double>& originalTvdValues, const std::vector<double>& tvdValuesToInterpolateFrom)
{
CVF_ASSERT(!originalMdValues.empty());
if (originalMdValues.size() < 2u)
{
return {originalMdValues};
}
std::vector<double> interpolatedMdValues;
interpolatedMdValues.reserve(tvdValuesToInterpolateFrom.size());
2019-08-30 08:23:11 -05:00
QPolygonF originalPoints;
for (size_t i = 0; i < originalMdValues.size(); ++i)
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
originalPoints << QPointF(originalMdValues[i], originalTvdValues[i]);
}
QwtSpline spline;
spline.setPoints(originalPoints);
double lastTVDValue = -1.0;
std::vector<int> segmentStartIndices = findSegmentIndices(originalMdValues, originalTvdValues, tvdValuesToInterpolateFrom);
for (size_t i = 0; i < segmentStartIndices.size(); ++i)
{
double currentTVDValue = tvdValuesToInterpolateFrom[i];
int startIndex = segmentStartIndices[i];
int endIndex = startIndex + 1;
// Search interval for best MD value
double startMD = originalMdValues[startIndex];
double endMD;
double mdDiff = 0.0;
if (interpolatedMdValues.size() > 1)
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
mdDiff = interpolatedMdValues[i - 1] - interpolatedMdValues[i - 2];
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
if (endIndex == originalMdValues.size())
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
endMD = originalMdValues[startIndex] + mdDiff;
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
else
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
if (!interpolatedMdValues.empty())
{
startMD = std::max(startMD, interpolatedMdValues.back() + 0.25 * mdDiff);
}
endMD = originalMdValues[endIndex] + mdDiff * 0.5;
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
double mdValue = solveForX(spline, startMD, endMD, currentTVDValue);
interpolatedMdValues.push_back(mdValue);
lastTVDValue = currentTVDValue;
}
return interpolatedMdValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<int> RigWellPathGeometryTools::findSegmentIndices(const std::vector<double>& originalMdValues, const std::vector<double>& originalTvdValues, const std::vector<double>& tvdValuesToInterpolateFrom)
{
CVF_ASSERT(!originalMdValues.empty());
if (originalMdValues.size() < 2u)
{
return {0};
}
QPolygonF polygon;
for (size_t i = 0; i < originalMdValues.size(); ++i)
{
polygon << QPointF(originalMdValues[i], originalTvdValues[i]);
}
QwtSpline spline;
spline.setPoints(polygon);
for (double md = 0.0; md < 1000; md += 50)
{
qDebug() << md << ", " << spline.value(md);
}
std::vector<int> segmentStartIndices;
segmentStartIndices.reserve(tvdValuesToInterpolateFrom.size());
int lastStartIndex = 0;
for (std::vector<double>::const_iterator it = tvdValuesToInterpolateFrom.begin(); it != tvdValuesToInterpolateFrom.end(); ++it)
{
double tvdValue = *it;
int currentStartIndex = lastStartIndex;
// Increment current_it until we find an interval containing our TVD
while (currentStartIndex < (int)(originalTvdValues.size() - 1))
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
double diffCurrent = originalTvdValues[currentStartIndex] - tvdValue;
if (std::abs(diffCurrent) < 1.0e-8) // Current is matching the point
2019-08-28 09:00:01 -05:00
{
break;
}
2019-08-30 08:23:11 -05:00
int nextStartIndex = currentStartIndex + 1;
double diffNext = originalTvdValues[nextStartIndex] - tvdValue;
if (diffCurrent * diffNext < 0.0) // One is above, the other is below
{
break;
}
// Attempt to interpolate
double mdCurrent = originalMdValues[currentStartIndex];
double mdNext = originalMdValues[nextStartIndex];
double tvdCurrent = spline.value(mdCurrent);
double tvdNext = spline.value(mdNext);
if (std::abs(tvdCurrent - tvdValue) < std::abs(tvdNext - tvdValue))
{
break;
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
currentStartIndex = nextStartIndex;
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
segmentStartIndices.push_back(currentStartIndex);
2019-08-28 09:00:01 -05:00
2019-08-30 08:23:11 -05:00
lastStartIndex = currentStartIndex;
2019-08-28 09:00:01 -05:00
}
2019-08-30 08:23:11 -05:00
return segmentStartIndices;
2019-08-28 09:00:01 -05:00
}
std::vector<cvf::Vec3d> RigWellPathGeometryTools::interpolateUndefinedNormals(const cvf::Vec3d& planeNormal,
const std::vector<cvf::Vec3d>& normals,
const std::vector<cvf::Vec3d>& vertices)
{
std::vector<cvf::Vec3d> interpolated(normals);
2018-05-25 05:39:56 -05:00
cvf::Vec3d lastNormalNonInterpolated(0, 0, 0);
cvf::Vec3d lastNormalAny(0, 0, 0);
double distanceFromLast = 0.0;
for (size_t i = 0; i < normals.size(); ++i)
{
cvf::Vec3d currentNormal = normals[i];
bool currentInterpolated = false;
if (i > 0)
{
distanceFromLast += (vertices[i] - vertices[i - 1]).length();
}
if (currentNormal.length() == 0.0) // Undefined. Need to estimate from neighbors.
{
currentInterpolated = true;
currentNormal = planeNormal; // By default use the plane normal
cvf::Vec3d nextNormal(0, 0, 0);
double distanceToNext = 0.0;
for (size_t j = i + 1; j < normals.size() && nextNormal.length() == 0.0; ++j)
{
nextNormal = normals[j];
distanceToNext += (vertices[j] - vertices[j - 1]).length();
}
2018-05-25 05:39:56 -05:00
if (lastNormalNonInterpolated.length() > 0.0 && nextNormal.length() > 0.0)
{
// Both last and next are acceptable, interpolate!
2018-05-25 05:39:56 -05:00
currentNormal = (distanceToNext * lastNormalNonInterpolated + distanceFromLast * nextNormal).getNormalized();
}
2018-05-25 05:39:56 -05:00
else if (lastNormalNonInterpolated.length() > 0.0)
{
2018-05-25 05:39:56 -05:00
currentNormal = lastNormalNonInterpolated;
}
else if (nextNormal.length() > 0.0)
{
currentNormal = nextNormal;
}
}
2018-05-25 05:39:56 -05:00
if (i > 0 && currentNormal * lastNormalAny < -std::numeric_limits<double>::epsilon())
{
currentNormal *= -1.0;
}
if (!currentInterpolated)
{
2018-05-25 05:39:56 -05:00
lastNormalNonInterpolated = currentNormal;
distanceFromLast = 0.0; // Reset distance
}
2018-05-25 05:39:56 -05:00
lastNormalAny = currentNormal;
interpolated[i] = currentNormal;
}
return interpolated;
}
cvf::Vec3d RigWellPathGeometryTools::estimateDominantDirectionInXYPlane(const std::vector<cvf::Vec3d>& vertices)
{
cvf::Vec3d directionSum(0, 0, 0);
for (size_t i = 1; i < vertices.size(); ++i)
{
cvf::Vec3d vec = vertices[i] - vertices[i - 1];
vec.z() = 0.0;
if (directionSum.length() > 0.0 && (directionSum * vec) < 0.0)
{
vec *= -1;
}
directionSum += vec;
}
if (directionSum.length() < 1.0e-8)
{
directionSum = cvf::Vec3d(0, -1, 0);
}
return directionSum.getNormalized();
}
2019-08-28 09:00:01 -05:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
2019-08-30 08:23:11 -05:00
double RigWellPathGeometryTools::solveForX(const QwtSpline& spline, double minX, double maxX, double y)
2019-08-28 09:00:01 -05:00
{
2019-08-30 08:23:11 -05:00
const double phi = (1.0 + std::sqrt(5.0)) / 2.0;
const double tol = 1.0e-8;
double a = minX, b = maxX;
double c = b - (b - a) / phi;
double d = a + (b - a) / phi;
2019-08-28 09:00:01 -05:00
2019-08-30 08:23:11 -05:00
double fa = spline.value(a) - y;
double fb = spline.value(b) - y;
double fc = spline.value(c) - y;
double fd = spline.value(d) - y;
for (int n = 0; n < 100; ++n)
2019-08-29 15:30:15 -05:00
{
2019-08-30 08:23:11 -05:00
if (std::fabs(c - d) < tol)
{
break;
}
if (std::fabs(fc) < std::fabs(fd))
{
b = d;
fb = fd;
d = c;
fd = fc;
c = b - (b - a) / phi;
fc = spline.value(c) - y;
}
else
{
a = c;
fa = fc;
c = d;
fc = fd;
d = a + (b - a) / phi;
fd = spline.value(d) - y;
}
2019-08-29 15:30:15 -05:00
}
2019-08-30 08:23:11 -05:00
return (a + b) / 2.0;
2019-08-28 09:00:01 -05:00
}