ResInsight/ApplicationCode/ProjectDataModel/RimStatisticsCaseEvaluator.cpp

426 lines
18 KiB
C++
Raw Normal View History

2013-03-02 08:33:27 -06:00
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RIStdInclude.h"
2013-03-02 08:33:27 -06:00
#include "RimStatisticsCaseEvaluator.h"
2013-03-02 08:33:27 -06:00
#include "RigReservoirCellResults.h"
#include "RimReservoirView.h"
#include "RimReservoir.h"
#include "RigEclipseCase.h"
2013-03-02 08:33:27 -06:00
//#include "RigEclipseCase.h"
2013-03-02 08:33:27 -06:00
#include <QDebug>
#include "cafProgressInfo.h"
2013-03-02 08:33:27 -06:00
//--------------------------------------------------------------------------------------------------
/// An internal class to do the actual computations
//--------------------------------------------------------------------------------------------------
class RimStatisticsEvaluator
{
public:
RimStatisticsEvaluator(const std::vector<double>& values)
: m_values(values),
m_min(HUGE_VAL),
m_max(-HUGE_VAL),
m_mean(HUGE_VAL),
m_dev(HUGE_VAL)
{
}
void getStatistics(double& min, double& max, double& mean, double& dev, double& range)
{
evaluate();
min = m_min;
max = m_max;
mean = m_mean;
dev = m_dev;
range = m_max - m_min;
}
private:
void evaluate()
{
double sum = 0.0;
double sumSquared = 0.0;
size_t validValueCount = 0;
for (size_t i = 0; i < m_values.size(); i++)
{
double val = m_values[i];
if (val == HUGE_VAL) continue;
validValueCount++;
if (val < m_min) m_min = val;
if (val > m_max) m_max = val;
sum += val;
sumSquared += (val * val);
}
if (validValueCount > 0)
{
m_mean = sum / validValueCount;
// http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
// Running standard deviation
double s0 = validValueCount;
double s1 = sum;
double s2 = sumSquared;
m_dev = cvf::Math::sqrt( (s0 * s2) - (s1 * s1) ) / s0;
}
}
private:
const std::vector<double>& m_values;
double m_min;
double m_max;
double m_mean;
double m_dev;
};
2013-03-02 08:33:27 -06:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStatisticsCaseEvaluator::addNamedResult(RigCaseCellResultsData* destinationCellResults, RimDefines::ResultCatType resultType, const QString& resultName, size_t activeUnionCellCount)
2013-03-02 08:33:27 -06:00
{
// Use time step dates from first result in first source case
CVF_ASSERT(m_sourceCases.size() > 0);
std::vector<QDateTime> sourceTimeStepDates = m_sourceCases[0]->results(RifReaderInterface::MATRIX_RESULTS)->cellResults()->timeStepDates(0);
size_t destinationScalarResultIndex = destinationCellResults->addEmptyScalarResult(resultType, resultName, true);
CVF_ASSERT(destinationScalarResultIndex != cvf::UNDEFINED_SIZE_T);
2013-03-02 08:33:27 -06:00
destinationCellResults->setTimeStepDates(destinationScalarResultIndex, sourceTimeStepDates);
std::vector< std::vector<double> >& dataValues = destinationCellResults->cellScalarResults(destinationScalarResultIndex);
dataValues.resize(sourceTimeStepDates.size());
// Initializes the size of the destination dataset to active union cell count
for (size_t i = 0; i < sourceTimeStepDates.size(); i++)
2013-03-02 08:33:27 -06:00
{
dataValues[i].resize(activeUnionCellCount, HUGE_VAL);
2013-03-02 08:33:27 -06:00
}
}
QString createResultNameMin(const QString& resultName) { return resultName + "_MIN"; }
QString createResultNameMax(const QString& resultName) { return resultName + "_MAX"; }
QString createResultNameMean(const QString& resultName) { return resultName + "_MEAN"; }
QString createResultNameDev(const QString& resultName) { return resultName + "_DEV"; }
QString createResultNameRange(const QString& resultName) { return resultName + "_RANGE"; }
2013-03-02 08:33:27 -06:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStatisticsCaseEvaluator::buildSourceMetaData(RimDefines::ResultCatType resultType, const QString& resultName)
{
if (m_sourceCases.size() == 0) return;
std::vector<QDateTime> timeStepDates = m_sourceCases[0]->results(RifReaderInterface::MATRIX_RESULTS)->cellResults()->timeStepDates(0);
for (size_t caseIdx = 1; caseIdx < m_sourceCases.size(); caseIdx++)
{
RigCaseData* eclipseCase = m_sourceCases.at(caseIdx)->reservoirData();
RimReservoirCellResultsStorage* matrixResults = m_sourceCases[caseIdx]->results(RifReaderInterface::MATRIX_RESULTS);
size_t scalarResultIndex = matrixResults->findOrLoadScalarResult(resultType, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
size_t scalarResultIndex = matrixResults->cellResults()->addEmptyScalarResult(resultType, resultName, false);
matrixResults->cellResults()->setTimeStepDates(scalarResultIndex, timeStepDates);
std::vector< std::vector<double> >& dataValues = matrixResults->cellResults()->cellScalarResults(scalarResultIndex);
dataValues.resize(timeStepDates.size());
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStatisticsCaseEvaluator::evaluateForResults(const QList<QPair<RimDefines::ResultCatType, QString> >& resultSpecification)
2013-03-02 08:33:27 -06:00
{
CVF_ASSERT(m_destinationCase);
2013-03-02 08:33:27 -06:00
size_t activeMatrixCellCount = m_destinationCase->activeCellInfo(RifReaderInterface::MATRIX_RESULTS)->globalActiveCellCount();
RigCaseCellResultsData* matrixResults = m_destinationCase->results(RifReaderInterface::MATRIX_RESULTS);
for (int i = 0; i < resultSpecification.size(); i++)
{
RimDefines::ResultCatType resultType = resultSpecification[i].first;
QString resultName = resultSpecification[i].second;
// Special handling if SOIL is asked for
// Build SGAS/SWAT meta data, SOIL is automatically generated as part of RigReservoirCellResults::findOrLoadScalarResultForTimeStep
if (resultName.toUpper() == "SOIL")
{
size_t swatIndex = m_sourceCases.at(0)->results(RifReaderInterface::MATRIX_RESULTS)->cellResults()->findScalarResultIndex(resultType, "SWAT");
if (swatIndex != cvf::UNDEFINED_SIZE_T)
{
buildSourceMetaData(resultType, "SWAT");
}
size_t sgasIndex = m_sourceCases.at(0)->results(RifReaderInterface::MATRIX_RESULTS)->cellResults()->findScalarResultIndex(resultType, "SGAS");
if (sgasIndex != cvf::UNDEFINED_SIZE_T)
{
buildSourceMetaData(resultType, "SGAS");
}
}
else
{
// Meta info is loaded from disk for first case only
// Build metadata for all other source cases
buildSourceMetaData(resultType, resultName);
}
QString minResultName = createResultNameMin(resultName);
QString maxResultName = createResultNameMax(resultName);
QString meanResultName = createResultNameMean(resultName);
QString devResultName = createResultNameDev(resultName);
QString rangeResultName = createResultNameRange(resultName);
2013-03-02 08:33:27 -06:00
if (activeMatrixCellCount > 0)
{
addNamedResult(matrixResults, resultType, minResultName, activeMatrixCellCount);
addNamedResult(matrixResults, resultType, maxResultName, activeMatrixCellCount);
addNamedResult(matrixResults, resultType, meanResultName, activeMatrixCellCount);
addNamedResult(matrixResults, resultType, devResultName, activeMatrixCellCount);
addNamedResult(matrixResults, resultType, rangeResultName, activeMatrixCellCount);
}
}
2013-03-02 08:33:27 -06:00
if (activeMatrixCellCount > 0)
{
caf::ProgressInfo info(m_timeStepIndices.size(), "Computing Statistics");
2013-03-02 08:33:27 -06:00
for (size_t timeIndicesIdx = 0; timeIndicesIdx < m_timeStepIndices.size(); timeIndicesIdx++)
{
size_t timeStepIdx = m_timeStepIndices[timeIndicesIdx];
size_t gridCount = 0;
for (size_t gridIdx = 0; gridIdx < m_destinationCase->gridCount(); gridIdx++)
{
RigGridBase* grid = m_destinationCase->grid(gridIdx);
for (int i = 0; i < resultSpecification.size(); i++)
{
RimDefines::ResultCatType resultType = resultSpecification[i].first;
QString resultName = resultSpecification[i].second;
size_t dataAccessTimeStepIndex = timeStepIdx;
// Always evaluate statistics once, and always use time step index zero
if (resultType == RimDefines::STATIC_NATIVE)
{
if (timeIndicesIdx > 0) continue;
dataAccessTimeStepIndex = 0;
}
// Build data access objects for source scalar results
cvf::Collection<cvf::StructGridScalarDataAccess> dataAccesObjectList;
for (size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++)
2013-03-02 08:33:27 -06:00
{
RimCase* eclipseCase = m_sourceCases.at(caseIdx);
2013-03-02 08:33:27 -06:00
size_t scalarResultIndex = eclipseCase->results(RifReaderInterface::MATRIX_RESULTS)->findOrLoadScalarResultForTimeStep(resultType, resultName, dataAccessTimeStepIndex);
2013-03-02 08:33:27 -06:00
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObject = eclipseCase->reservoirData()->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
if (dataAccessObject.notNull())
{
dataAccesObjectList.push_back(dataAccessObject.p());
}
2013-03-02 08:33:27 -06:00
}
// Build data access objects form destination scalar results
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObjectMin = NULL;
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObjectMax = NULL;
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObjectMean = NULL;
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObjectDev = NULL;
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObjectRange = NULL;
2013-03-02 08:33:27 -06:00
{
size_t scalarResultIndex = matrixResults->findScalarResultIndex(resultType, createResultNameMin(resultName));
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
2013-03-02 08:33:27 -06:00
{
dataAccessObjectMin = m_destinationCase->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
2013-03-02 08:33:27 -06:00
}
}
2013-03-02 08:33:27 -06:00
{
size_t scalarResultIndex = matrixResults->findScalarResultIndex(resultType, createResultNameMax(resultName));
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
2013-03-02 08:33:27 -06:00
{
dataAccessObjectMax = m_destinationCase->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
2013-03-02 08:33:27 -06:00
}
}
2013-03-02 08:33:27 -06:00
{
size_t scalarResultIndex = matrixResults->findScalarResultIndex(resultType, createResultNameMean(resultName));
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
2013-03-02 08:33:27 -06:00
{
dataAccessObjectMean = m_destinationCase->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
2013-03-02 08:33:27 -06:00
}
}
2013-03-02 08:33:27 -06:00
{
size_t scalarResultIndex = matrixResults->findScalarResultIndex(resultType, createResultNameDev(resultName));
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
2013-03-02 08:33:27 -06:00
{
dataAccessObjectDev = m_destinationCase->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
2013-03-02 08:33:27 -06:00
}
}
2013-03-02 08:33:27 -06:00
{
size_t scalarResultIndex = matrixResults->findScalarResultIndex(resultType, createResultNameRange(resultName));
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
{
dataAccessObjectRange = m_destinationCase->dataAccessObject(grid, RifReaderInterface::MATRIX_RESULTS, dataAccessTimeStepIndex, scalarResultIndex);
}
}
double min, max, mean, dev, range;
for (size_t cellIdx = 0; cellIdx < grid->cellCount(); cellIdx++)
{
std::vector<double> values(dataAccesObjectList.size(), HUGE_VAL);
size_t globalGridCellIdx = grid->globalGridCellIndex(cellIdx);
if (m_destinationCase->activeCellInfo(RifReaderInterface::MATRIX_RESULTS)->isActive(globalGridCellIdx))
2013-03-02 08:33:27 -06:00
{
bool foundAnyValidValues = false;
for (size_t caseIdx = 0; caseIdx < dataAccesObjectList.size(); caseIdx++)
{
double val = dataAccesObjectList.at(caseIdx)->cellScalar(cellIdx);
values[caseIdx] = val;
if (val != HUGE_VAL)
{
foundAnyValidValues = true;
}
}
min = HUGE_VAL;
max = HUGE_VAL;
mean = HUGE_VAL;
dev = HUGE_VAL;
range = HUGE_VAL;
if (foundAnyValidValues)
{
RimStatisticsEvaluator stat(values);
stat.getStatistics(min, max, mean, dev, range);
}
if (dataAccessObjectMin.notNull())
{
dataAccessObjectMin->setCellScalar(cellIdx, min);
}
if (dataAccessObjectMax.notNull())
{
dataAccessObjectMax->setCellScalar(cellIdx, max);
}
if (dataAccessObjectMean.notNull())
{
dataAccessObjectMean->setCellScalar(cellIdx, mean);
}
if (dataAccessObjectDev.notNull())
{
dataAccessObjectDev->setCellScalar(cellIdx, dev);
}
if (dataAccessObjectRange.notNull())
{
dataAccessObjectRange->setCellScalar(cellIdx, range);
}
2013-03-02 08:33:27 -06:00
}
}
}
}
for (size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++)
{
RimCase* eclipseCase = m_sourceCases.at(caseIdx);
// When one time step is completed, close all result files.
// Microsoft note: On Windows, the maximum number of files open at the same time is 512
// http://msdn.microsoft.com/en-us/library/kdfaxaay%28vs.71%29.aspx
//
eclipseCase->results(RifReaderInterface::MATRIX_RESULTS)->readerInterface()->close();
}
info.setProgress(timeIndicesIdx);
2013-03-02 08:33:27 -06:00
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStatisticsCaseEvaluator::debugOutput(RimDefines::ResultCatType resultType, const QString& resultName, size_t timeStepIdx)
2013-03-02 08:33:27 -06:00
{
CVF_ASSERT(m_destinationCase);
2013-03-02 08:33:27 -06:00
qDebug() << resultName << "timeIdx : " << timeStepIdx;
size_t scalarResultIndex = m_destinationCase->results(RifReaderInterface::MATRIX_RESULTS)->findScalarResultIndex(resultType, resultName);
2013-03-02 08:33:27 -06:00
cvf::ref<cvf::StructGridScalarDataAccess> dataAccessObject = m_destinationCase->dataAccessObject(m_destinationCase->mainGrid(), RifReaderInterface::MATRIX_RESULTS, timeStepIdx, scalarResultIndex);
if (dataAccessObject.isNull()) return;
for (size_t cellIdx = 0; cellIdx < m_globalCellCount; cellIdx++)
{
qDebug() << dataAccessObject->cellScalar(cellIdx);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStatisticsCaseEvaluator::RimStatisticsCaseEvaluator(const std::vector<RimCase*>& sourceCases, const std::vector<size_t>& timeStepIndices, const RimStatisticsConfig& statisticsConfig, RigCaseData* destinationCase)
: m_sourceCases(sourceCases),
2013-03-02 08:33:27 -06:00
m_statisticsConfig(statisticsConfig),
m_destinationCase(destinationCase),
m_globalCellCount(0),
m_timeStepIndices(timeStepIndices)
{
if (sourceCases.size() > 0)
{
m_globalCellCount = sourceCases[0]->reservoirData()->mainGrid()->cells().size();
2013-03-02 08:33:27 -06:00
}
CVF_ASSERT(m_destinationCase);
2013-03-02 08:33:27 -06:00
}