ResInsight/ApplicationLibCode/ProjectDataModel/Streamlines/RimStreamlineGenerator2.cpp

200 lines
7.8 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2021 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimStreamlineGenerator2.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RimStreamline.h"
#include "RimStreamlineDataAccess.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator2::RimStreamlineGenerator2( std::set<size_t>& wellCells )
: RimStreamlineGeneratorBase( wellCells )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator2::~RimStreamlineGenerator2()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator2::generateTracer( RigCell cell,
double direction,
QString simWellName,
std::list<RimStreamline*>& outStreamlines )
{
RiaDefines::PhaseType dominantPhase = m_phases.front();
const size_t cellIdx = cell.gridLocalCellIndex();
// try to generate a tracer for all faces in the selected cell with positive flow
for ( auto faceIdx : m_allFaces )
{
double flowVelocity = m_dataAccess->combinedFaceValueByArea( cell, faceIdx, m_phases, dominantPhase ) * direction;
if ( flowVelocity > m_flowThreshold )
{
m_seeds.push_back( std::make_pair( cellIdx, faceIdx ) );
}
}
while ( m_seeds.size() > 0 )
{
const size_t cellIdx = m_seeds.front().first;
const cvf::StructGridInterface::FaceType faceIdx = m_seeds.front().second;
RimStreamline* streamline = new RimStreamline( simWellName );
growStreamline( streamline, cellIdx, faceIdx, direction );
if ( direction < 0.0 ) streamline->reverse();
outStreamlines.push_back( streamline );
m_seeds.pop_front();
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator2::growStreamline( RimStreamline* streamline,
size_t cellIdx,
cvf::StructGridInterface::FaceType faceIdx,
double direction )
{
// get the cell
RigCell cell = m_dataAccess->grid()->cell( cellIdx );
// get rate
RiaDefines::PhaseType dominantPhaseOut;
double flowVelocity = std::abs( m_dataAccess->combinedFaceValueByArea( cell, faceIdx, m_phases, dominantPhaseOut ) );
while ( flowVelocity >= m_flowThreshold )
{
// grow from given face center to cell center, exiting if we reach the max length
if ( !growStreamlineFromTo( streamline, cell.faceCenter( faceIdx ), cell.center(), flowVelocity, dominantPhaseOut ) )
break;
// move to next cell
RigCell neighbor = cell.neighborCell( faceIdx );
if ( neighbor.isInvalid() ) break;
cvf::StructGridInterface::FaceType neighborFaceIdx = cvf::StructGridInterface::oppositeFace( faceIdx );
// get rate
flowVelocity =
std::abs( m_dataAccess->combinedFaceValueByArea( neighbor, neighborFaceIdx, m_phases, dominantPhaseOut ) );
// grow from face center to cell center, exiting if we reach the max point limit
if ( !growStreamlineFromTo( streamline,
neighbor.faceCenter( neighborFaceIdx ),
neighbor.center(),
flowVelocity,
dominantPhaseOut ) )
break;
// have we been here?
if ( m_visitedCells.count( neighbor.gridLocalCellIndex() ) > 0 ) break;
// is this a well?
if ( m_wellCells.count( neighbor.gridLocalCellIndex() ) > 0 ) break;
m_visitedCells.insert( neighbor.gridLocalCellIndex() );
// find the face with max flow where we should exit the cell
cvf::StructGridInterface::FaceType exitFace = cvf::StructGridInterface::FaceType::NO_FACE;
double maxRate = 0.0;
std::map<cvf::StructGridInterface::FaceType, double> rateMap;
for ( auto face : m_allFaces )
{
RiaDefines::PhaseType dummy;
if ( face == neighborFaceIdx ) continue;
double faceRate = m_dataAccess->combinedFaceValueByArea( neighbor, face, m_phases, dummy ) * direction;
if ( ( ( direction < 0.0 ) && ( faceRate < maxRate ) ) || ( ( direction > 0.0 ) && ( faceRate > maxRate ) ) )
{
exitFace = face;
maxRate = faceRate;
}
if ( face % 2 != 0 )
rateMap[face] = -1.0 * faceRate * direction;
else
rateMap[face] = faceRate * direction;
}
flowVelocity = std::abs( maxRate );
faceIdx = exitFace;
cell = neighbor;
// add seeds for other faces with flow > threshold
for ( auto& kvp : rateMap )
{
if ( kvp.first == exitFace ) continue;
if ( std::abs( kvp.second ) < m_flowThreshold ) continue;
m_seeds.push_back( std::make_pair( neighbor.gridLocalCellIndex(), kvp.first ) );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimStreamlineGenerator2::growStreamlineFromTo( RimStreamline* streamline,
cvf::Vec3d startPos,
cvf::Vec3d endPos,
double flowVelocity,
RiaDefines::PhaseType dominantPhase )
{
double totDistance = endPos.pointDistance( startPos );
if ( totDistance < 0.1 ) return true;
if ( flowVelocity < m_flowThreshold ) return false;
cvf::Vec3d direction = endPos - startPos;
direction.normalize();
direction *= flowVelocity;
int nSteps = (int)std::round( ( totDistance / flowVelocity ) / m_resolution );
cvf::Vec3d curpos = startPos;
for ( int i = 0; i < nSteps; i++ )
{
streamline->addTracerPoint( curpos, direction, dominantPhase );
curpos = startPos + direction;
if ( streamline->size() > m_maxPoints ) return false;
}
return true;
}