ResInsight/ApplicationCode/ReservoirDataModel/RigStimPlanFractureDefinition.cpp

665 lines
26 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 - Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigStimPlanFractureDefinition.h"
#include "RiaFractureDefines.h"
#include "RiaLogging.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigStatisticsMath.h"
#include "RivWellFracturePartMgr.h"
#include "cvfMath.h"
2017-06-26 04:05:46 -05:00
#include <cmath>
//--------------------------------------------------------------------------------------------------
/// Internal functions
//--------------------------------------------------------------------------------------------------
size_t findMirrorXIndex(std::vector<double> xs);
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const double RigStimPlanFractureDefinition::THRESHOLD_VALUE = 1e-5;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanFractureDefinition::RigStimPlanFractureDefinition()
: m_unitSet(RiaEclipseUnitTools::UNITS_UNKNOWN)
, m_topPerfTvd(HUGE_VAL)
, m_bottomPerfTvd(HUGE_VAL)
, m_xMirrorMode(false)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanFractureDefinition::~RigStimPlanFractureDefinition()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaEclipseUnitTools::UnitSystem RigStimPlanFractureDefinition::unitSet() const
{
return m_unitSet;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::xCount() const
{
return m_Xs.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::yCount() const
{
return m_Ys.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::minDepth() const
{
return -minY();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::maxDepth() const
{
return -maxY();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::topPerfTvd() const
{
return m_topPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::bottomPerfTvd() const
{
return m_bottomPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::minY() const
{
return m_Ys[0];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanFractureDefinition::maxY() const
{
return m_Ys.back();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::scaleXs(double scaleFactor)
{
// Scale using 0 as scaling anchor
for (double& x : m_Xs)
{
x *= scaleFactor;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::scaleYs(double scaleFactor, double wellPathIntersectionY)
{
// Scale using wellPathIntersectionY as scaling anchor
for (double& y : m_Ys)
{
y = (y - wellPathIntersectionY) * scaleFactor + wellPathIntersectionY;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setTvdToTopPerf(double topPerfTvd)
{
m_topPerfTvd = topPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setTvdToBottomPerf(double bottomPerfTvd)
{
m_bottomPerfTvd = bottomPerfTvd;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::generateXsFromFileXs(bool xMirrorMode)
{
m_xMirrorMode = xMirrorMode;
m_Xs.clear();
if (m_xMirrorMode)
{
size_t mirrorIndex = findMirrorXIndex(m_fileXs);
std::list<double> xs;
// Mirror positive X values
xs.push_back(m_fileXs[mirrorIndex]);
for (size_t i = mirrorIndex + 1; i < m_fileXs.size(); i++)
{
xs.push_front(-m_fileXs[i]);
xs.push_back(m_fileXs[i]);
}
m_Xs = std::vector<double>(xs.begin(), xs.end());
}
else
{
m_Xs = m_fileXs;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>> RigStimPlanFractureDefinition::generateDataLayoutFromFileDataLayout(std::vector<std::vector<double>> fileXYData) const
{
if (m_xMirrorMode)
{
std::vector<std::vector<double>> xyData;
size_t mirrorIndex = findMirrorXIndex(m_fileXs);
for (const auto& yData : fileXYData)
{
std::list<double> xValues;
// Mirror positive X values
xValues.push_back(yData[mirrorIndex]);
for (size_t x = mirrorIndex + 1; x < yData.size(); x++)
{
xValues.push_front(yData[x]);
xValues.push_back(yData[x]);
}
xyData.push_back(std::vector<double>(xValues.begin(), xValues.end()));
}
return xyData;
}
else
{
return fileXYData;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigStimPlanFractureDefinition::numberOfParameterValuesOK(std::vector<std::vector<double>> propertyValuesAtTimestep) const
{
size_t xCount = m_Xs.size();
if ( propertyValuesAtTimestep.size() != yCount()) return false;
for ( const std::vector<double>& valuesAtDepthVector : propertyValuesAtTimestep )
{
if ( valuesAtDepthVector.size() != xCount ) return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStimPlanFractureDefinition::adjustedYCoordsAroundWellPathPosition(double wellPathIntersectionAtFractureDepth) const
{
std::vector<double> yRelativeToWellPath;
for ( const double& y : m_Ys )
{
double adjustedDepth = y + wellPathIntersectionAtFractureDepth;
yRelativeToWellPath.push_back(adjustedDepth);
}
return yRelativeToWellPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<QString, QString> > RigStimPlanFractureDefinition::getStimPlanPropertyNamesUnits() const
{
std::vector<std::pair<QString, QString> > propertyNamesUnits;
{
for ( const RigStimPlanResultFrames& stimPlanDataEntry : this->m_stimPlanResults )
{
propertyNamesUnits.push_back(std::make_pair(stimPlanDataEntry.resultName, stimPlanDataEntry.unit));
}
}
return propertyNamesUnits;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>>
RigStimPlanFractureDefinition::conductivityValuesAtTimeStep(const QString& resultName,
int activeTimeStepIndex,
RiaEclipseUnitTools::UnitSystem requiredUnitSet) const
{
std::vector<std::vector<double>> conductivityValues;
QString conductivityUnitTextOnFile;
std::vector<std::pair<QString, QString>> propertyNamesUnitsOnFile = this->getStimPlanPropertyNamesUnits();
for (auto properyNameUnit : propertyNamesUnitsOnFile)
{
if (resultName == properyNameUnit.first)
{
conductivityUnitTextOnFile = properyNameUnit.second;
}
}
if (conductivityUnitTextOnFile.isEmpty())
{
RiaLogging::error("Did not find unit for conductivity on file");
return conductivityValues;
}
conductivityValues = this->getDataAtTimeIndex(resultName, conductivityUnitTextOnFile, activeTimeStepIndex);
// Convert to the conductivity unit system used by the fracture template
// The conductivity value is used in the computations of transmissibility when exporting COMPDAT, and has unit md-m or md-ft
// This unit must match the unit used to represent coordinates of the grid used for export
for (auto& yValues : conductivityValues)
{
for (auto& xVal : yValues)
{
if (requiredUnitSet == RiaEclipseUnitTools::UNITS_FIELD)
{
xVal = RiaEclipseUnitTools::convertToFeet(xVal, conductivityUnitTextOnFile);
}
else if (requiredUnitSet == RiaEclipseUnitTools::UNITS_METRIC)
{
xVal = RiaEclipseUnitTools::convertToMeter(xVal, conductivityUnitTextOnFile);
}
}
}
return conductivityValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigFractureGrid> RigStimPlanFractureDefinition::createFractureGrid(const QString& resultName,
int activeTimeStepIndex,
double wellPathIntersectionAtFractureDepth,
RiaEclipseUnitTools::UnitSystem requiredUnitSet) const
{
std::vector<std::vector<double>> conductivityValues = conductivityValuesAtTimeStep(resultName, activeTimeStepIndex, requiredUnitSet);
if (conductivityValues.empty())
{
return nullptr;
}
std::vector<RigFractureCell> stimPlanCells;
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = std::make_pair(0, 0);
bool wellCenterStimPlanCellFound = false;
std::vector<double> yCoordsAtNodes = this->adjustedYCoordsAroundWellPathPosition(wellPathIntersectionAtFractureDepth);
std::vector<double> xCoordsAtNodes = this->m_Xs;
std::vector<double> xCoords;
2017-06-26 04:05:46 -05:00
for ( int i = 0; i < static_cast<int>(xCoordsAtNodes.size()) - 1; i++ ) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for ( int i = 0; i < static_cast<int>(yCoordsAtNodes.size()) - 1; i++ ) depthCoords.push_back((yCoordsAtNodes[i] + yCoordsAtNodes[i + 1]) / 2);
2017-06-26 04:05:46 -05:00
for ( int i = 0; i < static_cast<int>(xCoords.size()) - 1; i++ )
{
2017-06-26 04:05:46 -05:00
for ( int j = 0; j < static_cast<int>(depthCoords.size()) - 1; j++ )
{
std::vector<cvf::Vec3d> cellPolygon;
cellPolygon.push_back(cvf::Vec3d(xCoords[i], depthCoords[j], 0.0));
cellPolygon.push_back(cvf::Vec3d(xCoords[i + 1], depthCoords[j], 0.0));
cellPolygon.push_back(cvf::Vec3d(xCoords[i + 1], depthCoords[j + 1], 0.0));
cellPolygon.push_back(cvf::Vec3d(xCoords[i], depthCoords[j + 1], 0.0));
RigFractureCell stimPlanCell(cellPolygon, i, j);
if ( !conductivityValues.empty() ) //Assuming vector to be of correct length, or no values
{
stimPlanCell.setConductivityValue(conductivityValues[j + 1][i + 1]);
}
else
{
stimPlanCell.setConductivityValue(cvf::UNDEFINED_DOUBLE);
}
// The well path is intersecting the fracture at origo in the fracture coordinate system
// Find the Stimplan cell where the well path is intersecting
if ( cellPolygon[0].x() <= 0.0 && cellPolygon[1].x() >= 0.0 )
{
if ( cellPolygon[1].y() >= 0.0 && cellPolygon[2].y() <= 0.0 )
{
wellCenterStimPlanCellIJ = std::make_pair(stimPlanCell.getI(), stimPlanCell.getJ());
RiaLogging::debug(QString("Setting wellCenterStimPlanCell at cell %1, %2").
arg(QString::number(stimPlanCell.getI()), QString::number(stimPlanCell.getJ())));
wellCenterStimPlanCellFound = true;
}
}
stimPlanCells.push_back(stimPlanCell);
}
}
if ( !wellCenterStimPlanCellFound )
{
RiaLogging::error("Did not find stim plan cell at well crossing!");
}
cvf::ref<RigFractureGrid> fractureGrid = new RigFractureGrid;
fractureGrid->setFractureCells(stimPlanCells);
fractureGrid->setWellCenterFractureCellIJ(wellCenterStimPlanCellIJ);
fractureGrid->setICellCount(this->m_Xs.size() - 2);
fractureGrid->setJCellCount(this->adjustedYCoordsAroundWellPathPosition(wellPathIntersectionAtFractureDepth).size() - 2);
return fractureGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStimPlanFractureDefinition::fractureGridResults(const QString& resultName,
const QString& unitName,
size_t timeStepIndex) const
{
std::vector<double> fractureGridResults;
const std::vector<std::vector<double>>& resultValuesAtTimeStep = this->getDataAtTimeIndex(resultName,
unitName,
timeStepIndex);
for ( int i = 0; i < static_cast<int>(xCount()) - 2; i++ )
{
for ( int j = 0; j < static_cast<int>(yCount()) - 2; j++ )
{
2017-06-26 04:05:46 -05:00
if ( j+1 < static_cast<int>(resultValuesAtTimeStep.size()) && i+1 < static_cast<int>(resultValuesAtTimeStep[j + 1].size()) )
{
fractureGridResults.push_back(resultValuesAtTimeStep[j + 1][i + 1]);
}
else
{
fractureGridResults.push_back(HUGE_VAL);
}
}
}
return fractureGridResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::createFractureTriangleGeometry(double wellPathIntersectionAtFractureDepth,
const QString& fractureUserName,
std::vector<cvf::Vec3f>* vertices,
std::vector<cvf::uint>* triangleIndices) const
{
std::vector<double> xCoords = this->m_Xs;
cvf::uint lenXcoords = static_cast<cvf::uint>(xCoords.size());
std::vector<double> adjustedYs = this->adjustedYCoordsAroundWellPathPosition(wellPathIntersectionAtFractureDepth);
for ( cvf::uint k = 0; k < adjustedYs.size(); k++ )
{
for ( cvf::uint i = 0; i < lenXcoords; i++ )
{
cvf::Vec3f node = cvf::Vec3f(xCoords[i], adjustedYs[k], 0);
vertices->push_back(node);
if ( i < lenXcoords - 1 && k < adjustedYs.size() - 1 )
{
if ( xCoords[i] < THRESHOLD_VALUE )
{
//Upper triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
//Lower triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
triangleIndices->push_back((i)+(k + 1)*lenXcoords);
}
else
{
//Upper triangle
triangleIndices->push_back(i + k*lenXcoords);
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i)+(k + 1)*lenXcoords);
//Lower triangle
triangleIndices->push_back((i + 1) + k*lenXcoords);
triangleIndices->push_back((i + 1) + (k + 1)*lenXcoords);
triangleIndices->push_back((i)+ (k + 1)*lenXcoords);
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::timeSteps() const
{
return m_timeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::addTimeStep(double time)
{
if (!timeStepExists(time)) m_timeSteps.push_back(time);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigStimPlanFractureDefinition::timeStepExists(double timeStepValueToCheck) const
{
for (double timeStep : m_timeSteps)
{
if (fabs(timeStepValueToCheck - timeStep) < THRESHOLD_VALUE) return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::getTimeStepIndex(double timeStepValue) const
{
size_t index = 0;
while (index < m_timeSteps.size())
{
if (fabs(m_timeSteps[index] - timeStepValue) < 1e-4)
{
return index;
}
index++;
}
return -1; //returns -1 if not found
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::totalNumberTimeSteps() const
{
return m_timeSteps.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigStimPlanFractureDefinition::resultIndex(const QString& resultName, const QString& unit) const
{
for (size_t i = 0; i < m_stimPlanResults.size(); i++)
{
if (m_stimPlanResults[i].resultName == resultName && m_stimPlanResults[i].unit == unit)
{
return i;
}
}
return cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::setDataAtTimeValue(QString resultName, QString unit, std::vector<std::vector<double>> data, double timeStepValue)
{
size_t resIndex = resultIndex(resultName, unit);
if (resIndex != cvf::UNDEFINED_SIZE_T)
{
m_stimPlanResults[resIndex].parameterValues[getTimeStepIndex(timeStepValue)] = data;
}
else
{
RigStimPlanResultFrames resultData;
resultData.resultName = resultName;
resultData.unit = unit;
std::vector<std::vector<std::vector<double>>> values(m_timeSteps.size());
resultData.parameterValues = values;
resultData.parameterValues[getTimeStepIndex(timeStepValue)] = data;
m_stimPlanResults.push_back(resultData);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<std::vector<double>>& RigStimPlanFractureDefinition::getDataAtTimeIndex(const QString& resultName, const QString& unit, size_t timeStepIndex) const
{
size_t resIndex = resultIndex(resultName, unit);
if (resIndex != cvf::UNDEFINED_SIZE_T)
{
if (timeStepIndex < m_stimPlanResults[resIndex].parameterValues.size())
2017-02-20 03:04:21 -06:00
{
return m_stimPlanResults[resIndex].parameterValues[timeStepIndex];
2017-02-20 03:04:21 -06:00
}
}
RiaLogging::error("Requested parameter does not exists in stimPlan data");
static std::vector<std::vector<double>> emptyVector;
return emptyVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStimPlanFractureDefinition::appendDataToResultStatistics(const QString& resultName, const QString& unit,
MinMaxAccumulator& minMaxAccumulator,
PosNegAccumulator& posNegAccumulator) const
{
size_t resIndex = resultIndex(resultName, unit);
if (resIndex == cvf::UNDEFINED_SIZE_T) return;
for (const auto& timeValues : m_stimPlanResults[resIndex].parameterValues)
{
for (const auto& values : timeValues)
{
minMaxAccumulator.addData(values);
posNegAccumulator.addData(values);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RigStimPlanFractureDefinition::conductivityResultNames() const
{
QStringList resultNames;
for (const auto& stimPlanResult : m_stimPlanResults)
{
if (stimPlanResult.resultName.contains("conductivity", Qt::CaseInsensitive))
{
resultNames.push_back(stimPlanResult.resultName);
}
}
return resultNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t findMirrorXIndex(std::vector<double> xs)
{
size_t mirrorIndex = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < xs.size(); i++)
{
if (xs[i] > -RigStimPlanFractureDefinition::THRESHOLD_VALUE)
{
mirrorIndex = i;
break;
}
}
return mirrorIndex;
}