ResInsight/ThirdParty/custom-opm-flowdiag-app/opm-flowdiagnostics-applications/opm/utility/ECLPvtWater.cpp

381 lines
10 KiB
C++
Raw Normal View History

/*
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/utility/ECLPvtWater.hpp>
#include <opm/utility/ECLPhaseIndex.hpp>
#include <opm/utility/ECLPropTable.hpp>
#include <opm/utility/ECLPvtCommon.hpp>
#include <opm/utility/ECLResultData.hpp>
#include <opm/utility/ECLUnitHandling.hpp>
#include <cassert>
#include <cmath>
#include <exception>
#include <functional>
#include <memory>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
#include <ert/ecl/ecl_kw_magic.h>
namespace {
::Opm::ECLPVT::ConvertUnits waterUnitConverter(const int usys)
{
using ToSI = ::Opm::ECLPVT::CreateUnitConverter::ToSI;
const auto u = ::Opm::ECLUnits::createUnitSystem(usys);
// [ Pref, 1/Bw, Cw, 1/(Bw*mu_w), Cw - Cv ]
return ::Opm::ECLPVT::ConvertUnits {
ToSI::pressure(*u),
{
ToSI::recipFvf(*u),
ToSI::compressibility(*u),
ToSI::recipFvfVisc(*u),
ToSI::compressibility(*u)
}
};
}
} // Anonymous
class PVTCurves
{
public:
using ElemIt = std::vector<double>::const_iterator;
using ConvertUnits = ::Opm::ECLPVT::ConvertUnits;
PVTCurves(ElemIt xBegin,
ElemIt xEnd,
const ConvertUnits& convert,
std::vector<ElemIt>& colIt);
std::vector<double>
formationVolumeFactor(const std::vector<double>& pw) const
{
return this->evaluate(pw, [this](const double p) -> double
{
// 1 / (1 / B)
return 1.0 / this->recipFvf(p);
});
}
std::vector<double>
viscosity(const std::vector<double>& pw) const
{
return this->evaluate(pw, [this](const double p) -> double
{
// (1 / B) / (1 / (B * mu))
return this->recipFvf(p) / this->recipFvfVisc(p);
});
}
double& surfaceMassDensity()
{
return this->rhoS_;
}
double surfaceMassDensity() const
{
return this->rhoS_;
}
private:
double pw_ref_ { 1.0 };
double recipFvf_ { 1.0 }; // 1 / B
double recipFvfVisc_ { 1.0 }; // 1 / (B*mu)
double Cw_ { 1.0 };
double diffCwCv_ { 0.0 }; // Cw - Cv
double rhoS_ { 0.0 };
double recipFvf(const double pw) const
{
const auto x = this->Cw_ * (pw - this->pw_ref_);
return this->recipFvf_ * this->exp(x);
}
double recipFvfVisc(const double pw) const
{
const auto y = this->diffCwCv_ * (pw - this->pw_ref_);
return this->recipFvfVisc_ * this->exp(y);
}
double exp(const double x) const
{
return 1.0 + x*(1.0 + x/2.0);
}
template <class CalcQuant>
std::vector<double>
evaluate(const std::vector<double>& pw,
CalcQuant&& calculate) const
{
auto q = std::vector<double>{};
q.reserve(pw.size());
for (const auto& pwi : pw) {
q.push_back(calculate(pwi));
}
return q;
}
};
PVTCurves::PVTCurves(ElemIt xBegin,
ElemIt xEnd,
const ConvertUnits& convert,
std::vector<ElemIt>& colIt)
{
assert ((std::distance(xBegin, xEnd) == 1) &&
"Logic Error in Defining PVTW Input Ranges");
#ifdef NDEBUG
// Suppress "unusued variable" in release mode.
static_cast<void>(xEnd);
#endif // NDEBUG
// Recall: Table is
//
// [ Pw, 1/Bw, Cw, 1/(Bw*mu_w), Cw - Cv ]
//
// xBegin is Pw, colIt is remaining four columns.
this->recipFvf_ = convert.column[0](*colIt[0]); // 1/Bw
this->Cw_ = convert.column[1](*colIt[1]); // Cw
this->recipFvfVisc_ = convert.column[2](*colIt[2]); // 1/(Bw*mu_w)
this->diffCwCv_ = convert.column[3](*colIt[3]); // Cw - Cv
// Honour requirement that constructor advances column iterators.
for (auto& it : colIt) { ++it; }
if (! (std::abs(*xBegin) < 1.0e20)) {
throw std::invalid_argument {
"Invalid Input PVTW Table"
};
}
this->pw_ref_ = convert.indep(*xBegin);
}
// #####################################################################
// #####################################################################
// =====================================================================
// Class ECLPVT::Water::Impl
// ---------------------------------------------------------------------
class Opm::ECLPVT::Water::Impl
{
public:
Impl(const ECLPropTableRawData& raw,
const int usys,
const std::vector<double>& rhoS);
using RegIdx = std::vector<PVTCurves>::size_type;
std::vector<double>
formationVolumeFactor(const RegIdx region,
const std::vector<double>& pw) const
{
this->validateRegIdx(region);
return this->eval_[region].formationVolumeFactor(pw);
}
std::vector<double>
viscosity(const RegIdx region,
const std::vector<double>& pw) const
{
this->validateRegIdx(region);
return this->eval_[region].viscosity(pw);
}
double surfaceMassDensity(const RegIdx region) const
{
this->validateRegIdx(region);
return this->eval_[region].surfaceMassDensity();
}
private:
std::vector<PVTCurves> eval_;
void validateRegIdx(const RegIdx region) const;
};
Opm::ECLPVT::Water::Impl::Impl(const ECLPropTableRawData& raw,
const int usys,
const std::vector<double>& rhoS)
{
using ElemIt = PVTCurves::ElemIt;
const auto cvrt = waterUnitConverter(usys);
this->eval_ = MakeInterpolants<PVTCurves>::fromRawData(raw,
[&cvrt](ElemIt xBegin,
ElemIt xEnd,
std::vector<ElemIt>& colIt) -> PVTCurves
{
return PVTCurves(xBegin, xEnd, cvrt, colIt);
});
assert (rhoS.size() == this->eval_.size());
for (auto n = this->eval_.size(), i = 0*n; i < n; ++i) {
this->eval_[i].surfaceMassDensity() = rhoS[i];
}
}
void
Opm::ECLPVT::Water::Impl::validateRegIdx(const RegIdx region) const
{
if (region >= this->eval_.size()) {
if (this->eval_.empty()) {
throw std::invalid_argument {
"No Water PVT Interpolant Available in Region "
+ std::to_string(region + 1)
};
}
throw std::invalid_argument {
"Region Index " +
std::to_string(region) +
" Outside Valid Range (0 .. " +
std::to_string(this->eval_.size() - 1) + ')'
};
}
}
// =====================================================================
// Class ECLPVT::Water
// ---------------------------------------------------------------------
Opm::ECLPVT::Water::Water(const ECLPropTableRawData& raw,
const int usys,
const std::vector<double>& rhoS)
: pImpl_(new Impl(raw, usys, rhoS))
{}
Opm::ECLPVT::Water::~Water()
{}
Opm::ECLPVT::Water::Water(const Water& rhs)
: pImpl_(new Impl(*rhs.pImpl_))
{}
Opm::ECLPVT::Water::Water(Water&& rhs)
: pImpl_(std::move(rhs.pImpl_))
{}
Opm::ECLPVT::Water&
Opm::ECLPVT::Water::operator=(const Water& rhs)
{
this->pImpl_.reset(new Impl(*rhs.pImpl_));
return *this;
}
Opm::ECLPVT::Water&
Opm::ECLPVT::Water::operator=(Water&& rhs)
{
this->pImpl_ = std::move(rhs.pImpl_);
return *this;
}
std::vector<double>
Opm::ECLPVT::Water::formationVolumeFactor(const int region,
const WaterPressure& pw) const
{
return this->pImpl_->formationVolumeFactor(region, pw.data);
}
std::vector<double>
Opm::ECLPVT::Water::viscosity(const int region,
const WaterPressure& pw) const
{
return this->pImpl_->viscosity(region, pw.data);
}
double
Opm::ECLPVT::Water::surfaceMassDensity(const int region) const
{
return this->pImpl_->surfaceMassDensity(region);
}
// =====================================================================
std::unique_ptr<Opm::ECLPVT::Water>
Opm::ECLPVT::CreateWaterPVTInterpolant::
fromECLOutput(const ECLInitFileData& init)
{
using WPtr = ::std::unique_ptr<Opm::ECLPVT::Water>;
const auto& ih = init.keywordData<int>(INTEHEAD_KW);
const auto iphs = static_cast<unsigned int>(ih[INTEHEAD_PHASE_INDEX]);
if ((iphs & (1u << 1)) == 0) {
// Water is not an active phase.
// Return sentinel (null) pointer.
return WPtr{};
}
auto raw = ::Opm::ECLPropTableRawData{};
const auto& tabdims = init.keywordData<int>("TABDIMS");
const auto& tab = init.keywordData<double>("TAB");
raw.numPrimary = 1; // Single record per region
raw.numRows = 1; // Single record per region
raw.numCols = 5; // [ Pw, 1/B, Cw, 1/(B*mu), Cw - Cv ]
raw.numTables = tabdims[ TABDIMS_NTPVTW_ITEM ]; // # PVTW tables
if (raw.numTables == 0)
{
return WPtr{};
}
// Extract Full Table
{
const auto nTabElem =
raw.numPrimary * raw.numRows * raw.numCols * raw.numTables;
// Subtract one to account for 1-based indices.
const auto start = tabdims[ TABDIMS_IBPVTW_OFFSET_ITEM ] - 1;
if (start < 0) {
throw std::invalid_argument(
"Invalid table offset for TABDIMS_IBPVTW_OFFSET_ITEM");
}
raw.data.assign(&tab[start], &tab[start] + nTabElem);
}
const auto rhoS = surfaceMassDensity(init, ECLPhaseIndex::Aqua);
return WPtr{
new Water(raw, ih[ INTEHEAD_UNIT_INDEX ], rhoS)
};
}