ResInsight/ThirdParty/custom-opm-flowdiag-app/opm-flowdiagnostics-applications/tests/test_eclendpointscaling.cpp

1605 lines
49 KiB
C++
Raw Normal View History

/*
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include <config.h>
#endif // HAVE_CONFIG_H
#define NVERBOSE
#define BOOST_TEST_MODULE TEST_ECLENDPOINTSCALING
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <boost/test/unit_test.hpp>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <opm/utility/ECLEndPointScaling.hpp>
#include <opm/utility/ECLPropTable.hpp>
#include <opm/utility/ECLPvtCommon.hpp>
#include <opm/utility/ECLUnitHandling.hpp>
#include <opm/utility/imported/Units.hpp>
#include <exception>
#include <initializer_list>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <vector>
namespace {
template <class Collection1, class Collection2>
void check_is_close(const Collection1& c1, const Collection2& c2)
{
BOOST_REQUIRE_EQUAL(c1.size(), c2.size());
if (! c1.empty()) {
auto i1 = c1.begin(), e1 = c1.end();
auto i2 = c2.begin();
for (; i1 != e1; ++i1, ++i2) {
BOOST_CHECK_CLOSE(*i1, *i2, 1.0e-10);
}
}
}
::Opm::SatFunc::EPSEvalInterface::SaturationPoints
associate(const std::vector<double>& s)
{
using SatAssoc = ::Opm::SatFunc::
EPSEvalInterface::SaturationAssoc;
auto sp = ::Opm::SatFunc::
EPSEvalInterface::SaturationPoints{};
sp.reserve(s.size());
for (const auto& si : s) {
sp.push_back(SatAssoc{ 0, si });
}
return sp;
}
std::vector<double>
makeTable(const std::size_t ncol,
std::initializer_list<double> data)
{
auto result = std::vector<double>(data.size(), 0.0);
const auto nrows = data.size() / ncol;
auto di = std::begin(data);
for (auto i = 0*nrows; i < nrows; ++i) {
for (auto j = 0*ncol; j < ncol; ++j, ++di) {
result[i + j*nrows] = *di;
}
}
return result;
}
std::vector<double> sw_core1d_example()
{
return {
1.700000000000000e-01,
1.861700000000000e-01,
2.023400000000000e-01,
2.185110000000000e-01,
2.346810000000000e-01,
2.508510000000000e-01,
2.670210000000000e-01,
2.831910000000000e-01,
2.993620000000000e-01,
3.155320000000000e-01,
3.317020000000000e-01,
3.478720000000000e-01,
3.640430000000000e-01,
3.802130000000000e-01,
3.963830000000000e-01,
4.125530000000000e-01,
4.287230000000000e-01,
4.448940000000000e-01,
4.610640000000000e-01,
4.772340000000000e-01,
4.934040000000000e-01,
5.095740000000000e-01,
5.257450000000000e-01,
5.419150000000000e-01,
5.580850000000001e-01,
5.742550000000000e-01,
5.904260000000000e-01,
6.065960000000000e-01,
6.227660000000000e-01,
6.389359999999999e-01,
6.551060000000000e-01,
6.712770000000000e-01,
6.874470000000000e-01,
7.036170000000000e-01,
7.197870000000000e-01,
7.359570000000000e-01,
7.521280000000000e-01,
7.682980000000000e-01,
7.844680000000001e-01,
8.006380000000000e-01,
8.168090000000000e-01,
8.329790000000000e-01,
8.491490000000000e-01,
8.653189999999999e-01,
8.814890000000000e-01,
8.976600000000000e-01,
9.138300000000000e-01,
9.300000000000000e-01,
1.000000000000000e+00,
};
}
std::vector<double> krw_core1d_example()
{
return {
0,
4.526940000000000e-04,
1.810770000000000e-03,
4.074240000000000e-03,
7.243100000000000e-03,
1.131730000000000e-02,
1.629700000000000e-02,
2.218200000000000e-02,
2.897240000000000e-02,
3.666820000000000e-02,
4.526940000000000e-02,
5.477590000000000e-02,
6.518789999999999e-02,
7.650520000000000e-02,
8.872790000000000e-02,
1.018560000000000e-01,
1.158900000000000e-01,
1.308280000000000e-01,
1.466730000000000e-01,
1.634220000000000e-01,
1.810770000000000e-01,
1.996380000000000e-01,
2.191040000000000e-01,
2.394750000000000e-01,
2.607510000000000e-01,
2.829330000000000e-01,
3.060210000000000e-01,
3.300140000000000e-01,
3.549120000000000e-01,
3.807150000000000e-01,
4.074240000000000e-01,
4.350380000000000e-01,
4.635580000000000e-01,
4.929830000000000e-01,
5.233139999999999e-01,
5.545500000000000e-01,
5.866910000000000e-01,
6.197370000000000e-01,
6.536890000000000e-01,
6.885470000000000e-01,
7.243100000000000e-01,
7.609780000000000e-01,
7.985510000000000e-01,
8.370300000000001e-01,
8.764150000000001e-01,
9.167040000000000e-01,
9.579000000000000e-01,
1.000000000000000e+00,
1.000000000000000e+00,
};
}
std::vector<double> sgfn_raw()
{
return makeTable(5, {
0, 0, 0, 0, 0,
5.000e-02, 1.655000000000000e-03, 0, 3.310000000000000e-02, 0,
1.000e-01, 6.913000000000000e-03, 0, 1.051600000000000e-01, 0,
1.500e-01, 1.621300000000000e-02, 0, 1.860000000000001e-01, 0,
2.000e-01, 2.999000000000000e-02, 0, 2.755399999999998e-01, 0,
2.500e-01, 4.865500000000000e-02, 0, 3.733000000000000e-01, 0,
3.000e-01, 7.257300000000000e-02, 0, 4.783600000000001e-01, 0,
3.500e-01, 1.020460000000000e-01, 0, 5.894600000000001e-01, 0,
4.000e-01, 1.372870000000000e-01, 0, 7.048199999999992e-01, 0,
4.500e-01, 1.784020000000000e-01, 0, 8.223000000000005e-01, 0,
5.000e-01, 2.253680000000000e-01, 0, 9.393200000000004e-01, 0,
5.500e-01, 2.780300000000000e-01, 0, 1.053239999999999e+00, 0,
6.000e-01, 3.360930000000000e-01, 0, 1.161260000000001e+00, 0,
6.500e-01, 3.991350000000000e-01, 0, 1.260840000000000e+00, 0,
7.000e-01, 4.666310000000000e-01, 0, 1.349920000000002e+00, 0,
7.500e-01, 5.380000000000000e-01, 0, 1.427379999999999e+00, 0,
8.000e-01, 6.126650000000000e-01, 0, 1.493299999999998e+00, 0,
8.500e-01, 6.901690000000000e-01, 0, 1.550080000000002e+00, 0,
9.000e-01, 7.703950000000001e-01, 0, 1.604519999999999e+00, 0,
9.500e-01, 8.542180000000000e-01, 0, 1.676460000000002e+00, 0,
9.999e-01, 9.499000000000000e-01, 0, 1.917474949899796e+00, 0,
1.000e+00, 9.500000000000000e-01, 0, 1.000000000000000e+00, 0,
});
}
std::vector<double> sofn_raw()
{
return makeTable(5, {
0, 0, 0, 0, 0,
9.999999999998899e-05, 0, 0, 0, 0,
5.000000000000004e-02, 1.000000000000000e-05, 7.000000000000000e-06, 1.999999999999998e-04, 1.402805611222443e-04,
9.999999999999998e-02, 1.200000000000000e-04, 8.800000000000000e-05, 2.200000000000003e-03, 1.620000000000002e-03,
1.500000000000000e-01, 5.100000000000000e-04, 3.840000000000000e-04, 7.799999999999994e-03, 5.919999999999996e-03,
2.000000000000000e-01, 1.490000000000000e-03, 1.117000000000000e-03, 1.960000000000003e-02, 1.466000000000002e-02,
2.500000000000000e-01, 3.460000000000000e-03, 2.597000000000000e-03, 3.939999999999996e-02, 2.959999999999997e-02,
3.000000000000000e-01, 6.990000000000000e-03, 5.254000000000000e-03, 7.059999999999993e-02, 5.313999999999995e-02,
3.500000000000000e-01, 1.284000000000000e-02, 9.662000000000000e-03, 1.170000000000002e-01, 8.816000000000013e-02,
4.000000000000000e-01, 2.199000000000000e-02, 1.658600000000000e-02, 1.829999999999998e-01, 1.384799999999999e-01,
4.500000000000000e-01, 3.572000000000000e-02, 2.703500000000000e-02, 2.746000000000004e-01, 2.089800000000003e-01,
5.000000000000000e-01, 5.565000000000000e-02, 4.232400000000000e-02, 3.985999999999996e-01, 3.057799999999997e-01,
5.500000000000000e-01, 8.373999999999999e-02, 6.415100000000000e-02, 5.617999999999994e-01, 4.365399999999996e-01,
6.000000000000000e-01, 1.223700000000000e-01, 9.467100000000001e-02, 7.726000000000013e-01, 6.104000000000009e-01,
6.500000000000000e-01, 1.741500000000000e-01, 1.365540000000000e-01, 1.035599999999999e+00, 8.376599999999993e-01,
7.000000000000000e-01, 2.417700000000000e-01, 1.929920000000000e-01, 1.352400000000002e+00, 1.128760000000001e+00,
7.500000000000000e-01, 3.275700000000000e-01, 2.675890000000000e-01, 1.715999999999998e+00, 1.491939999999999e+00,
8.000000000000000e-01, 4.328600000000000e-01, 3.640430000000000e-01, 2.105799999999999e+00, 1.929079999999998e+00,
8.500000000000000e-01, 5.571700000000001e-01, 4.855060000000000e-01, 2.486200000000004e+00, 2.429260000000003e+00,
9.000000000000000e-01, 6.974600000000000e-01, 6.335620000000000e-01, 2.805799999999996e+00, 2.961119999999997e+00,
9.500000000000000e-01, 8.478200000000000e-01, 8.068880000000000e-01, 3.007200000000005e+00, 3.466520000000006e+00,
9.999000000000000e-01, 9.990000000000000e-01, 9.996137760000001e-01, 3.029659318637271e+00, 3.862239999999997e+00,
1.000000000000000e+00, 1.000000000000000e+00, 1.000000000000000e+00, 1.000000000000111e+01, 3.862239999999221e+00,
});
}
std::vector<double> swfn_raw()
{
return makeTable(5, {
0, 0, 3.756330000000000e+00, 0, 0,
1.00e-04, 0, 3.756320000000000e+00, 0, -1.000000000006551e-01,
5.00e-02, 8.6000e-04, 1.869810000000000e+00, 1.723446893787575e-02, -3.780581162324650e+01,
1.00e-01, 2.6300e-03, 1.237310000000000e+00, 3.539999999999999e-02, -1.265000000000000e+01,
1.50e-01, 5.2400e-03, 9.182100000000000e-01, 5.220000000000001e-02, -6.382000000000001e+00,
2.00e-01, 8.7700e-03, 7.245100000000000e-01, 7.059999999999998e-02, -3.873999999999998e+00,
2.50e-01, 1.3380e-02, 5.934100000000000e-01, 9.220000000000000e-02, -2.622000000000000e+00,
3.00e-01, 1.9270e-02, 4.981100000000000e-01, 1.178000000000000e-01, -1.906000000000000e+00,
3.50e-01, 2.6720e-02, 4.251100000000000e-01, 1.490000000000001e-01, -1.460000000000000e+00,
4.00e-01, 3.6080e-02, 3.669100000000000e-01, 1.871999999999998e-01, -1.163999999999998e+00,
4.50e-01, 4.7810e-02, 3.191100000000000e-01, 2.346000000000000e-01, -9.560000000000004e-01,
5.00e-01, 6.2500e-02, 2.788100000000000e-01, 2.938000000000001e-01, -8.060000000000003e-01,
5.50e-01, 8.0900e-02, 2.440100000000000e-01, 3.679999999999997e-01, -6.959999999999993e-01,
6.00e-01, 1.0394e-01, 2.135100000000000e-01, 4.608000000000007e-01, -6.100000000000008e-01,
6.50e-01, 1.3277e-01, 1.863100000000000e-01, 5.765999999999993e-01, -5.439999999999996e-01,
7.00e-01, 1.6869e-01, 1.616100000000000e-01, 7.184000000000011e-01, -4.940000000000007e-01,
7.50e-01, 2.1302e-01, 1.390100000000000e-01, 8.865999999999988e-01, -4.519999999999998e-01,
8.00e-01, 2.6667e-01, 1.180100000000000e-01, 1.073000000000000e+00, -4.199999999999994e-01,
8.50e-01, 3.2918e-01, 9.830999999999999e-02, 1.250200000000001e+00, -3.940000000000007e-01,
9.00e-01, 3.9706e-01, 7.961000000000000e-02, 1.357600000000000e+00, -3.739999999999996e-01,
9.50e-01, 4.6103e-01, 6.161000000000000e-02, 1.279400000000001e+00, -3.600000000000005e-01,
1.00e+00, 5.0000e-01, 4.408000000000000e-02, 7.793999999999994e-01, -3.505999999999996e-01,
});
}
Opm::ECLPropTableRawData makeSatFunc(std::vector<double> data)
{
auto table = Opm::ECLPropTableRawData{};
table.data = std::move(data);
table.numTables = 1;
table.numPrimary = 1;
table.numCols = 5;
table.numRows = table.data.size() / table.numCols;
return table;
}
Opm::SatFuncInterpolant sgfn()
{
// Input tables follow METRIC unit conventions.
const auto usys = Opm::ECLUnits::createUnitSystem(1);
auto convert = Opm::SatFuncInterpolant::ConvertUnits{};
convert.indep = [](const double s) { return s; };
// Krg(Sg)
convert.column.emplace_back(
[](const double kr) { return kr; });
// Pcgo(Sg)
convert.column.push_back(
Opm::ECLPVT::CreateUnitConverter::ToSI::pressure(*usys));
// dKrg/dSg
convert.column.emplace_back(
[](const double dkr) { return dkr; });
// dPcgo/dSg
convert.column.push_back(
Opm::ECLPVT::CreateUnitConverter::ToSI::pressure(*usys));
return {
makeSatFunc(sgfn_raw()), convert
};
}
Opm::SatFuncInterpolant sofn()
{
auto convert = Opm::SatFuncInterpolant::ConvertUnits{};
convert.indep = [](const double s) { return s; };
// Krow(So)
convert.column.emplace_back(
[](const double kr) { return kr; });
// Krog(So)
convert.column.emplace_back(
[](const double kr) { return kr; });
// dKrow/dSo
convert.column.emplace_back(
[](const double dkr) { return dkr; });
// dKrow/dSo
convert.column.emplace_back(
[](const double dkr) { return dkr; });
return {
makeSatFunc(sofn_raw()), convert
};
}
Opm::SatFuncInterpolant swfn()
{
// Input tables follow METRIC unit conventions.
const auto usys = Opm::ECLUnits::createUnitSystem(1);
auto convert = Opm::SatFuncInterpolant::ConvertUnits{};
convert.indep = [](const double s) { return s; };
// Krw(Sw)
convert.column.emplace_back(
[](const double kr) { return kr; });
// Pcow(Sw)
convert.column.push_back(
Opm::ECLPVT::CreateUnitConverter::ToSI::pressure(*usys));
// dKrw/dSw
convert.column.emplace_back(
[](const double dkr) { return dkr; });
// dPcow/dSw
convert.column.push_back(
Opm::ECLPVT::CreateUnitConverter::ToSI::pressure(*usys));
return {
makeSatFunc(swfn_raw()), convert
};
}
} // Namespace Anonymous
// =====================================================================
// Two-point scaling
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE (TwoPointScaling_FullRange)
BOOST_AUTO_TEST_CASE (NoScaling)
{
namespace SF = ::Opm::SatFunc;
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.0, 1.0 };
const auto smin = std::vector<double>{ 0.0 };
const auto smax = std::vector<double>{ 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
check_is_close(s_inp, s);
}
}
BOOST_AUTO_TEST_CASE (ScaledConnate)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.2, 1.0] maps to [ 0.0, 1.0 ]
const auto smin = std::vector<double>{ 0.2 };
const auto smax = std::vector<double>{ 1.0 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.0, 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0,
0,
0.25,
0.5,
0.75,
1.0,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.2, // t.s <= smin => smin
0.2, // t.s <= smin => smin
0.4,
0.6,
0.8,
1.0,
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_CASE (ScaledMax)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.0, 0.8] maps to [ 0.0, 1.0 ]
const auto smin = std::vector<double>{ 0.0 };
const auto smax = std::vector<double>{ 0.8 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.0, 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0,
0.25,
0.5,
0.75,
1.0,
1.0,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
0.8, // t.s >= smax => smax
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_CASE (ScaledBoth)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.2, 0.8] maps to [ 0.0, 1.0 ]
const auto smin = std::vector<double>{ 0.2 };
const auto smax = std::vector<double>{ 0.8 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.0, 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0,
0.0,
1.0 / 3.0,
2.0 / 3.0,
1.0,
1.0,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.2, // t.s <= smin => smin
0.2,
0.4,
0.6,
0.8,
0.8, // t.s >= smax => smax
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
BOOST_AUTO_TEST_SUITE (TwoPointScaling_ReducedRange)
BOOST_AUTO_TEST_CASE (NoScaling)
{
namespace SF = ::Opm::SatFunc;
const auto smin = std::vector<double>{ 0.2 };
const auto smax = std::vector<double>{ 0.8 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.2, 0.0, 0.8 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.2,
0.2,
0.4,
0.6,
0.8,
0.8,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
check_is_close(s_inp, expect);
}
}
BOOST_AUTO_TEST_CASE (ScaledConnate)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.0, 1.0] maps to [ 0.2, 0.8 ]
// s_eff = 0.6*s + 0.2
const auto smin = std::vector<double>{ 0.0 };
const auto smax = std::vector<double>{ 1.0 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.2, 0.0, 0.8 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.20,
0.32,
0.44,
0.56,
0.68,
0.80,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
check_is_close(s_inp, s);
}
}
BOOST_AUTO_TEST_CASE (ScaledMax)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.2, 0.8] maps to [ 0.0, 1.0 ]
// s_eff = max(0.75*s + 0.05, 0.2)
const auto smin = std::vector<double>{ 0.2 };
const auto smax = std::vector<double>{ 1.0 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.2, 0.0, 0.8 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.20,
0.20,
0.35,
0.50,
0.65,
0.80,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.2, // t.s <= smin -> smin
0.2,
0.4,
0.6,
0.8,
1.0,
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_CASE (ScaledBoth)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.2, 0.8] maps to [ 0.5, 0.7 ]
// s_eff = min(max(0.2, 3*s - 13/10), 0.8)
const auto smin = std::vector<double>{ 0.5 };
const auto smax = std::vector<double>{ 0.7 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.2, 0.0, 0.8 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.2,
0.2,
0.2,
0.5,
0.8,
0.8,
};
const auto eps = SF::TwoPointScaling{ smin, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.5, // t.s <= smin -> smin
0.5, // t.s <= smin -> smin
0.5, // t.s <= smin -> smin
0.6,
0.7, // t.s >= smax -> smax
0.7, // t.s >= smax -> smax
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
BOOST_AUTO_TEST_SUITE (HorizontalScaling_SatFuncCurves)
BOOST_AUTO_TEST_CASE (KrGas_2Pt)
{
const auto interp = sgfn();
using Interp = std::remove_cv<
std::remove_reference<decltype(interp)>::type
>::type;
const auto SG = std::vector<double>{
0.0, 0.025, 0.05, 0.075, 0.1 , 0.125, 0.15 , 0.175,
0.2, 0.225, 0.25, 0.275, 0.3 , 0.325, 0.35 , 0.375,
0.4, 0.425, 0.45, 0.475, 0.49995, 0.5,
};
// Live Sg in [0, 0.5]. Map to [0, 1] for table lookup
const auto eps = ::Opm::SatFunc::
TwoPointScaling{ { 0.0 }, { 0.5 } };
const auto tep = ::Opm::SatFunc::EPSEvalInterface::TableEndPoints {
interp.connateSat()[0] , // low
interp.connateSat()[0] , // disp (ignored)
interp.maximumSat()[0] // max
};
// Forward: Scaled SG -> Lookup/Table sg
{
const auto expect = interp.saturationPoints(Interp::InTable{0});
const auto sg = eps.eval(tep, associate(SG));
check_is_close(sg, expect);
}
// Reverse: Lookup/Table sg -> Scaled SG
{
const auto sg = interp.saturationPoints(Interp::InTable{0});
const auto scaled = eps.reverse(tep, associate(sg));
check_is_close(scaled, SG);
}
}
BOOST_AUTO_TEST_CASE (KrOW_3pt)
{
const auto interp = sofn();
using Interp = std::remove_cv<
std::remove_reference<decltype(interp)>::type
>::type;
const auto swl = 0.1;
const auto swcr = 0.1; // Swcr == Swco in table.
const auto sgl = 0.0;
// Scaled end-points:
// SOWCR = 0.2, SWCR = 0.25, SWL = 0.15, SGL = 0
// => Mobile So in [ 0.2, 0.85 ], Sr = 0.75.
const auto eps = ::Opm::SatFunc::
ThreePointScaling{ { 0.2 }, { 0.75 }, { 0.85 } };
const auto tep = ::Opm::SatFunc::EPSEvalInterface::TableEndPoints {
interp.criticalSat(Interp::ResultColumn{0})[0], // low
1.0 - (swcr + sgl), // disp (Sr)
1.0 - (swl + sgl), // max
};
// Forward: Scaled SO -> Lookup/Table so.
{
const auto SO = std::vector<double> {
0.0, 0.05, 0.1, 0.15,
// ------------ Sowcr -----------------
0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.749,
// ------------ Sr --------------------
0.75, 0.7501, 0.8, 0.825, 0.85,
};
const auto so = eps.eval(tep, associate(SO));
const auto expect = std::vector<double>{
// so = Sowcr. (SO < SLO)
9.9999999999988987e-05, // SO = 0.0
9.9999999999988987e-05, // SO = 0.05
9.9999999999988987e-05, // SO = 0.1
9.9999999999988987e-05, // SO = 0.15
// ------------ SLO ------------------
// so = tep.low + t*(tep.disp - tep.low)
// = 1.0e-4 + t*(0.9 - 1.0e-4)
//
// t = (SO - SLO) / (SR - SLO)
// = (SO - 0.2) / (0.75 - 0.2)
9.9999999999988987e-05, // SO = 0.2
0.081909090909090876, // SO = 0.25
0.16371818181818176, // SO = 0.3
0.24552727272727265, // SO = 0.35
0.32733636363636365, // SO = 0.4
0.40914545454545453, // SO = 0.45
0.49095454545454542, // SO = 0.5
0.57276363636363636, // SO = 0.55
0.6545727272727272, // SO = 0.6
0.73638181818181814, // SO = 0.65
0.81819090909090897, // SO = 0.7
0.85909545454545433, // SO = 0.725
0.89836381818181799, // SO = 0.749
// ------------ Sr --------------------
// Everything below here maps to Somax (=1-Swco) because the
// 'tep' data says that Sdisp == Smax in the (purported) input
// table. The actual SOFN data (sofn_raw()) does not account
// for Swco = 0.1 (> 0) and therefore provides satfunc values
// for So > 0.9.
0.90000000000000002, // SO = 0.75
0.90000000000000002, // SO = 0.751
0.90000000000000002, // SO = 0.8
0.90000000000000002, // SO = 0.825
0.90000000000000002, // SO = 0.85
};
check_is_close(so, expect);
}
// Reverse: Lookup/Table so -> Scaled SO.
//
// Note that "tep.disp" is equal to "tep.high" in the input table. In
// this particular case, the reverse scaling will map high saturation
// values to 'Sr' rather than the maximum mobile So (= 0.85) in order to
// enable distinguishing scaled critical saturation from scaled maximum
// saturation for purpose of converting to "regular" phase saturations
// (i.e., SW or SG).
{
const auto SO = std::vector<double> {
0.20000000000000001, // so = 0
0.20000000000000001, // so = 9.9999999999988987e-05
0.23049783309256588, // so = 0.050000000000000037
0.2610567840871208, // so = 0.099999999999999978
0.29161573508167576, // so = 0.14999999999999999
0.32217468607623073, // so = 0.20000000000000001
0.35273363707078564, // so = 0.25
0.38329258806534061, // so = 0.29999999999999999
0.41385153905989558, // so = 0.34999999999999998
0.44441049005445055, // so = 0.40000000000000002
0.47496944104900546, // so = 0.45000000000000001
0.50552839204356048, // so = 0.5
0.53608734303811545, // so = 0.55000000000000004
0.56664629403267042, // so = 0.59999999999999998
0.59720524502722527, // so = 0.65000000000000002
0.62776419602178024, // so = 0.69999999999999996
0.6583231470163351, // so = 0.75
0.68888209801089018, // so = 0.80000000000000004
0.71944104900544503, // so = 0.84999999999999998
0.75, // so = 0.90000000000000002
0.75, // so = 0.94999999999999996
0.75, // so = 0.99990000000000001
0.75, // so = 1
};
const auto so = interp.saturationPoints(Interp::InTable{0});
const auto scaled = eps.reverse(tep, associate(so));
check_is_close(scaled, SO);
}
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
// Three-point (alternative) scaling, applicable to relperm only.
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE (ThreePointScaling_FullRange)
BOOST_AUTO_TEST_CASE (NoScaling)
{
namespace SF = ::Opm::SatFunc;
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.2, 1.0 };
const auto smin = std::vector<double>{ 0.0 };
const auto sdisp = std::vector<double>{ 0.2 };
const auto smax = std::vector<double>{ 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto eps = SF::ThreePointScaling{ smin, sdisp, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
check_is_close(s_inp, s);
}
}
BOOST_AUTO_TEST_CASE (ScaledConnate)
{
namespace SF = ::Opm::SatFunc;
// Mobile Range: [0.4, 1.0] maps to [ 0.0, 1.0 ]
const auto smin = std::vector<double>{ 0.1 };
const auto sdisp = std::vector<double>{ 0.4 };
const auto smax = std::vector<double>{ 1.0 };
const auto tep = SF::EPSEvalInterface::
TableEndPoints { 0.0, 0.2, 1.0 };
const auto s = std::vector<double> {
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
};
const auto expect = std::vector<double> {
0,
1.0 / 15,
0.2,
7.0 / 15,
11.0 / 15,
1.0,
};
const auto eps = SF::ThreePointScaling{ smin, sdisp, smax };
// Input saturation -> Scaled saturation
{
const auto sp = associate(s);
const auto s_eff = eps.eval(tep, sp);
check_is_close(s_eff, expect);
}
// Tabulated saturation -> Input saturation
{
const auto sp = associate(expect);
const auto s_inp = eps.reverse(tep, sp);
const auto s_inp_expect = std::vector<double> {
0.1, // t.s <= smin -> smin
0.2,
0.4,
0.6,
0.8,
1.0,
};
check_is_close(s_inp, s_inp_expect);
}
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
// Pure vertical scaling of SF values.
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE (PureVerticalScaling_SFValues)
BOOST_AUTO_TEST_CASE (Parabola_ScaledCell)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
// val = linspace(0, 1, 11) .^ 2
const auto val = std::vector<double> {
0,
1.0e-02,
4.0e-02,
9.0e-02,
1.6e-01,
2.5e-01,
3.6e-01,
4.9e-01,
6.4e-01,
8.1e-01,
1.0e+00,
};
// Maximum value in cell is 0.5.
const auto scaler = Opm::SatFunc::PureVerticalScaling({ 0.5 });
// This is a lie. We do however not actually use the sp[i].sat values
// in *this particular application (pure v-scaling)* though--we only
// care about sp[i].cell--so we can get away with pretending that the
// function values (val) are saturations.
const auto sp = associate(val);
const auto f = SFVal{
SFPt{ 0.0, 0.0 }, // Displacement
SFPt{ 1.0, 1.0 }, // Maximum
};
const auto y = scaler.vertScale(f, sp, val);
// expect = 0.5 * val
const auto expect = std::vector<double> {
0,
5.00e-03,
2.00e-02,
4.50e-02,
8.00e-02,
1.25e-01,
1.80e-01,
2.45e-01,
3.20e-01,
4.05e-01,
5.00e-01,
};
check_is_close(y, expect);
}
BOOST_AUTO_TEST_CASE (Parabola_ScaledFunc)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
// val = linspace(0, 1, 11) .^ 2
const auto val = std::vector<double> {
0,
1.0e-02,
4.0e-02,
9.0e-02,
1.6e-01,
2.5e-01,
3.6e-01,
4.9e-01,
6.4e-01,
8.1e-01,
1.0e+00,
};
// Maximum value in cell is 1.
const auto scaler = Opm::SatFunc::PureVerticalScaling({ 1.0 });
// This is a lie. We do however not actually use the sp[i].sat values
// in *this particular application (pure v-scaling)* though--we only
// care about sp[i].cell--so we can get away with pretending that the
// function values (val) are saturations.
const auto sp = associate(val);
const auto f = SFVal{
SFPt{ 0.0, 0.0 }, // Displacement
SFPt{ 1.0, 2.0 }, // Maximum
};
const auto y = scaler.vertScale(f, sp, val);
// expect = val / 2
const auto expect = std::vector<double> {
0,
5.00e-03,
2.00e-02,
4.50e-02,
8.00e-02,
1.25e-01,
1.80e-01,
2.45e-01,
3.20e-01,
4.05e-01,
5.00e-01,
};
check_is_close(y, expect);
}
BOOST_AUTO_TEST_CASE (Parabola_ScaledBoth)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
// val = linspace(0, 1, 11) .^ 2
const auto val = std::vector<double> {
0,
1.0e-02,
4.0e-02,
9.0e-02,
1.6e-01,
2.5e-01,
3.6e-01,
4.9e-01,
6.4e-01,
8.1e-01,
1.0e+00,
};
// Maximum value in cell is 1.5.
const auto scaler = Opm::SatFunc::PureVerticalScaling({ 1.5 });
// This is a lie. We do however not actually use the sp[i].sat values
// in *this particular application (pure v-scaling)* though--we only
// care about sp[i].cell--so we can get away with pretending that the
// function values (val) are saturations.
const auto sp = associate(val);
const auto f = SFVal{
SFPt{ 0.0, 0.0 }, // Displacement
SFPt{ 1.0, 2.0 }, // Maximum
};
const auto y = scaler.vertScale(f, sp, val);
// expect = val * 0.75
const auto expect = std::vector<double> {
0,
7.500e-03,
3.000e-02,
6.750e-02,
1.200e-01,
1.875e-01,
2.700e-01,
3.675e-01,
4.800e-01,
6.075e-01,
7.500e-01,
};
check_is_close(y, expect);
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
// Critical saturation vertical scaling of SF values.
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE (CritSatVScale_SFValues)
/*
sw = 0.1 : 0.05 : 0.9;
kr = sw .^ 2;
[sdisp, fdisp, fmax] = deal(0.7, 0.6, 0.7);
i = ~ (sw > sdisp);
y = 0 * kr;
y( i) = kr(i) .* fdisp./sdisp^2;
y(~i) = fdisp + (kr(~i) - sdisp^2)./(kr(end) - sdisp^2) .* (fmax - fdisp);
figure, plot(sw, [kr; y], '.-')
legend('Unscaled', 'Vert. Scaled', 'Location', 'Best')
*/
BOOST_AUTO_TEST_CASE (Sw2_Regular)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
const auto sw = associate({
1.0e-01, 1.5e-01, 2.0e-01, 2.5e-01,
3.0e-01, 3.5e-01, 4.0e-01, 4.5e-01,
5.0e-01, 5.5e-01, 6.0e-01, 6.5e-01,
7.0e-01, 7.5e-01, 8.0e-01, 8.5e-01,
9.0e-01,
});
const auto kr = std::vector<double> { // sw^2
1.000e-02, 2.250e-02, 4.000e-02, 6.250e-02, // 0 .. 3
9.000e-02, 1.225e-01, 1.600e-01, 2.025e-01, // 4 .. 7
2.500e-01, 3.025e-01, 3.600e-01, 4.225e-01, // 8 .. 11
4.900e-01, 5.625e-01, 6.400e-01, 7.225e-01, // 12 .. 15
8.100e-01, // 16
};
const auto f = SFVal{
SFPt{ 0.7, 0.49 }, // Displacement
SFPt{ 0.9, 0.81 }, // Maximum
};
// Scaled residual displacement sat: 0.7 (unchanged)
// Scaled Kr at Scaled Sr (KRxR): 0.6
// Scaled maximum saturation: 0.9 (unchanged)
// Scaled Kr at Smax: (KRx) 0.7
const auto scaler = Opm::SatFunc::
CritSatVerticalScaling({ 0.71 }, { 0.6 }, { 0.9 }, { 0.7 });
const auto y = scaler.vertScale(f, sw, kr);
// expect = kr .* (KRxR/0.49), S \le Sr
// KRxR + (kr - 0.49)/(0.81 - 0.49)*(KRx - KRxR), Sr < S
const auto expect = std::vector<double> {
1.224489795918368e-02, // 0
2.755102040816328e-02, // 1
4.897959183673471e-02, // 2
7.653061224489796e-02, // 3
1.102040816326531e-01, // 4
1.500000000000000e-01, // 5
1.959183673469388e-01, // 6
2.479591836734695e-01, // 7
3.061224489795918e-01, // 8
3.704081632653062e-01, // 9
4.408163265306123e-01, // 10
5.173469387755103e-01, // 11
// ------- Sr -------
6.000000000000000e-01, // 12
6.226562500000000e-01, // 13
6.468750000000000e-01, // 14
6.726562500000000e-01, // 15
7.000000000000000e-01, // 16
};
check_is_close(y, expect);
}
BOOST_AUTO_TEST_CASE (Core1D_Coincident_FVal)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
const auto s = associate(sw_core1d_example());
const auto kr = krw_core1d_example();
const auto f = SFVal{
SFPt{ 0.93, 1.0 }, // Displacement
SFPt{ 1.0 , 1.0 }, // Maximum
};
const auto scaler = Opm::SatFunc::
CritSatVerticalScaling({ 0.93 }, { 0.9 }, { 1.0 }, { 1.0 });
const auto y = scaler.vertScale(f, s, kr);
const auto expect = std::vector<double> {
0,
4.074246000000000e-04,
1.629693000000000e-03,
3.666816000000000e-03,
6.518790000000000e-03,
1.018557000000000e-02,
1.466730000000000e-02,
1.996380000000000e-02,
2.607516000000000e-02,
3.300138000000000e-02,
4.074246000000000e-02,
4.929831000000000e-02,
5.866911000000000e-02,
6.885468000000000e-02,
7.985511000000001e-02,
9.167040000000000e-02,
1.043010000000000e-01,
1.177452000000000e-01,
1.320057000000000e-01,
1.470798000000000e-01,
1.629693000000000e-01,
1.796742000000000e-01,
1.971936000000000e-01,
2.155275000000000e-01,
2.346759000000000e-01,
2.546397000000000e-01,
2.754189000000000e-01,
2.970126000000000e-01,
3.194208000000000e-01,
3.426435000000000e-01,
3.666816000000000e-01,
3.915342000000000e-01,
4.172022000000000e-01,
4.436847000000000e-01,
4.709826000000000e-01,
4.990950000000000e-01,
5.280218999999999e-01,
5.577633000000000e-01,
5.883201000000000e-01,
6.196923000000001e-01,
6.518790000000000e-01,
6.848802000000001e-01,
7.186959000000001e-01,
7.533270000000001e-01,
7.887735000000000e-01,
8.250336000000000e-01,
8.621100000000000e-01,
9.000000000000000e-01,
1.000000000000000e+00,
};
check_is_close(y, expect);
}
BOOST_AUTO_TEST_SUITE_END ()
// =====================================================================
BOOST_AUTO_TEST_SUITE (VerticalScaling_SatFuncCurves)
BOOST_AUTO_TEST_CASE (Pcow_2Pt)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
const auto interp = swfn();
using Interp = std::remove_cv<
std::remove_reference<decltype(interp)>::type
>::type;
using ImportedOpm::unit::barsa;
// Maximum Pcow reset to 10 barsa.
const auto vscale = ::Opm::SatFunc::PureVerticalScaling {
{ 10.0*barsa }
};
const auto sw = interp.saturationPoints(Interp::InTable{0});
const auto pc = interp // Pc_ow = ResultColumn{1}
.interpolate(Interp::InTable{0}, Interp::ResultColumn{1}, sw);
const auto f = SFVal{
SFPt{ 1.0, 0.04408*barsa }, // Displacement
SFPt{ 0.0, 3.75633*barsa }, // Maximum
};
const auto PC = vscale.vertScale(f, associate(sw), pc);
const auto expect = std::vector<double> { // pc * (10.0 / 3.75633)
1000000,
999997.33782708121,
497775.75452635949,
329393.31741353922,
244443.37957527695,
192877.09013851287,
157976.00317331014,
132605.49525733895,
113171.63295024665,
97677.786562948415,
84952.60001118113,
74224.043148498662,
64959.681391145081,
56840.053988866792,
49598.943649785826,
43023.376540399804,
37006.865743957533,
31416.302614520024,
26171.821964523886,
21193.558606405721,
16401.64735260214,
11734.85822598121,
};
}
BOOST_AUTO_TEST_CASE (KrOG_3Pt)
{
using SFPt = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues::Point;
using SFVal = ::Opm::SatFunc::VerticalScalingInterface::FunctionValues;
const auto interp = sofn();
using Interp = std::remove_cv<
std::remove_reference<decltype(interp)>::type
>::type;
const auto so = interp.saturationPoints(Interp::InTable{0});
const auto krog = interp // krog = ResultColumn{1}
.interpolate(Interp::InTable{0}, Interp::ResultColumn{1}, so);
const auto f = SFVal{
SFPt{ 0.6, 0.094671 }, // Displacement
SFPt{ 1.0, 1.0 }, // Maximum
};
const auto vscale = ::Opm::SatFunc::CritSatVerticalScaling {
// s , Kr
{ 0.6 }, { 0.25 },
{ 1.0 }, { 0.6 }
};
const auto KROG = vscale.vertScale(f, associate(so), krog);
const auto expect = std::vector<double> {
// Left interval (So <= Sr = f.disp.sat = 0.6)
//
// Pure vertical scaling (multiply by a constant factor).
//
// Kr = Kr(So) * (KRORG / Kr(Sr; table))
// = Kr(So) * (KRORG / f.disp.val)
// = Kr(So) * (0.25 / 0.094671)
//
0, // So = 0, Kr(So) = 0,
0, // So = 1.0e-4 Kr(So) = 0,
1.8485069345417287e-05, // So = 0.05 Kr(So) = 7.0000e-06
0.00023238372891381731, // So = 0.1 Kr(So) = 8.8000e-05
0.0010140380898057484, // So = 0.15 Kr(So) = 3.8400e-04
0.0029496889226901584, // So = 0.2 Kr(So) = 1.1170e-03
0.0068579607271498132, // So = 0.25 Kr(So) = 2.5970e-03
0.013874364905831774, // So = 0.3 Kr(So) = 5.2540e-03
0.025514677145060262, // So = 0.35 Kr(So) = 9.6620e-03
0.043799051451870158, // So = 0.4 Kr(So) = 1.6586e-02
0.071391978536193765, // So = 0.45 Kr(So) = 2.7035e-02
0.11176601071077732, // So = 0.5 Kr(So) = 4.2324e-02
0.16940509765398062, // So = 0.55 Kr(So) = 6.4151e-02
0.25, // So = 0.6 Kr(So) = 9.4671e-02
// ------------------------------------------
//
// Right interval (So >= Sr)
//
// Scaled Kr values defined by linear function between relperm
// points (Kr(Sr),KRORG) and (Krmax,KRO)
//
// Kr(So) - Kr(Sr)
// Kr = KRORG + ----------------- (KRO - KRORG)
// Krmax - Kr(Sr)
//
// Kr(So) - f.disp.val
// = KRORG + ------------------------ (KRO - KRORG)
// f.max.val - f.disp.val
//
// Kr(So) - 0.094671
// = 0.25 + ------------------- (0.6 - 0.25)
// 1 - 0.094671
//
0.26619195894531161, // So = 0.65 Kr(So) = 0.136554
0.28801087781347995, // So = 0.7 Kr(So) = 0.192992
0.31685006224256596, // So = 0.75 Kr(So) = 0.267589
0.35413915825075742, // So = 0.8 Kr(So) = 0.364043
0.40109672837167476, // So = 0.85 Kr(So) = 0.485506
0.45833514667043695, // So = 0.9 Kr(So) = 0.633562
0.52534294162674566, // So = 0.95 Kr(So) = 0.806888
0.59985068588325352, // So = 0.9999 Kr(So) = 0.999613776
0.59999999999999998, // So = 1.0 Kr(So) = 1.0
};
check_is_close(KROG, expect);
}
BOOST_AUTO_TEST_SUITE_END ()