mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-25 18:55:39 -06:00
111 lines
2.9 KiB
C++
111 lines
2.9 KiB
C++
|
#include "RiaImageTools.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
/// Meijster, Roerdink, Hesselink
|
||
|
/// A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS IN LINEAR TIME
|
||
|
/// http://fab.cba.mit.edu/classes/S62.12/docs/Meijster_distance.pdf
|
||
|
/// Currently Euclidean only, but can be easily extended by replacing the lambda functions.
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
void RiaImageTools::distanceTransform2d(std::vector<std::vector<unsigned int>>& image)
|
||
|
{
|
||
|
if (image.empty())
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
if (image.front().empty())
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
const int64_t M = (int64_t)image.size();
|
||
|
const int64_t N = (int64_t)image.front().size();
|
||
|
|
||
|
unsigned int uinf = M + N;
|
||
|
|
||
|
// First phase
|
||
|
std::vector<std::vector<unsigned int>> g(M);
|
||
|
|
||
|
#pragma omp parallel for
|
||
|
for (int64_t x = 0; x < M; ++x)
|
||
|
{
|
||
|
g[x].resize(N, uinf);
|
||
|
if (image[x][0])
|
||
|
{
|
||
|
g[x][0] = 0;
|
||
|
}
|
||
|
for (int64_t y = 1; y < N - 1; ++y)
|
||
|
{
|
||
|
if (image[x][y])
|
||
|
{
|
||
|
g[x][y] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
g[x][y] = 1 + g[x][y - 1];
|
||
|
}
|
||
|
}
|
||
|
for (int64_t y = N - 2; y > 0; --y)
|
||
|
{
|
||
|
if (g[x][y + 1] < g[x][y])
|
||
|
{
|
||
|
g[x][y] = 1 + g[x][y + 1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto f = [](int64_t x, int64_t i, const std::vector<std::vector<unsigned int>>& g, int64_t y) {
|
||
|
return (x - i) * (x - i) + g[i][y] * g[i][y];
|
||
|
};
|
||
|
|
||
|
auto sep = [](int64_t i, int64_t u, const std::vector<std::vector<unsigned int>>& g, int64_t y) {
|
||
|
if (i == u) return (int64_t)0;
|
||
|
|
||
|
int64_t numerator = u * u - i * i + g[u][y] * g[u][y] - g[i][y] * g[i][y];
|
||
|
int64_t divisor = 2 * (u - i);
|
||
|
return numerator / divisor;
|
||
|
};
|
||
|
|
||
|
// Second phase
|
||
|
#pragma omp parallel for
|
||
|
for (int64_t y = 0; y < N; ++y)
|
||
|
{
|
||
|
int64_t q = 0;
|
||
|
std::vector<unsigned int> s(std::max(N, M), 0u);
|
||
|
std::vector<unsigned int> t(std::max(N, M), 0u);
|
||
|
|
||
|
for (int64_t u = 1; u < M - 1; ++u)
|
||
|
{
|
||
|
while (q >= 0 && f(t[q], s[q], g, y) > f(t[q], u, g, y))
|
||
|
{
|
||
|
q--;
|
||
|
}
|
||
|
if (q < 0)
|
||
|
{
|
||
|
q = 0;
|
||
|
s[0] = u;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int64_t w = 1 + sep((int64_t)s[q], u, g, y);
|
||
|
if (w < M)
|
||
|
{
|
||
|
q++;
|
||
|
s[q] = u;
|
||
|
t[q] = w;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int64_t u = M - 1; u > 0; --u)
|
||
|
{
|
||
|
image[u][y] = f(u, s[q], g, y);
|
||
|
if (u == t[q])
|
||
|
{
|
||
|
q = q - 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|