ResInsight/ApplicationCode/Application/Tools/RiaImageTools.cpp

111 lines
2.9 KiB
C++
Raw Normal View History

#include "RiaImageTools.h"
#include <algorithm>
//--------------------------------------------------------------------------------------------------
/// Meijster, Roerdink, Hesselink
/// A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS IN LINEAR TIME
/// http://fab.cba.mit.edu/classes/S62.12/docs/Meijster_distance.pdf
/// Currently Euclidean only, but can be easily extended by replacing the lambda functions.
//--------------------------------------------------------------------------------------------------
void RiaImageTools::distanceTransform2d(std::vector<std::vector<unsigned int>>& image)
{
if (image.empty())
{
return;
}
if (image.front().empty())
{
return;
}
const int64_t M = (int64_t)image.size();
const int64_t N = (int64_t)image.front().size();
unsigned int uinf = M + N;
// First phase
std::vector<std::vector<unsigned int>> g(M);
#pragma omp parallel for
for (int64_t x = 0; x < M; ++x)
{
g[x].resize(N, uinf);
if (image[x][0])
{
g[x][0] = 0;
}
for (int64_t y = 1; y < N - 1; ++y)
{
if (image[x][y])
{
g[x][y] = 0;
}
else
{
g[x][y] = 1 + g[x][y - 1];
}
}
for (int64_t y = N - 2; y > 0; --y)
{
if (g[x][y + 1] < g[x][y])
{
g[x][y] = 1 + g[x][y + 1];
}
}
}
auto f = [](int64_t x, int64_t i, const std::vector<std::vector<unsigned int>>& g, int64_t y) {
return (x - i) * (x - i) + g[i][y] * g[i][y];
};
auto sep = [](int64_t i, int64_t u, const std::vector<std::vector<unsigned int>>& g, int64_t y) {
if (i == u) return (int64_t)0;
int64_t numerator = u * u - i * i + g[u][y] * g[u][y] - g[i][y] * g[i][y];
int64_t divisor = 2 * (u - i);
return numerator / divisor;
};
// Second phase
#pragma omp parallel for
for (int64_t y = 0; y < N; ++y)
{
int64_t q = 0;
std::vector<unsigned int> s(std::max(N, M), 0u);
std::vector<unsigned int> t(std::max(N, M), 0u);
for (int64_t u = 1; u < M - 1; ++u)
{
while (q >= 0 && f(t[q], s[q], g, y) > f(t[q], u, g, y))
{
q--;
}
if (q < 0)
{
q = 0;
s[0] = u;
}
else
{
int64_t w = 1 + sep((int64_t)s[q], u, g, y);
if (w < M)
{
q++;
s[q] = u;
t[q] = w;
}
}
}
for (int64_t u = M - 1; u > 0; --u)
{
image[u][y] = f(u, s[q], g, y);
if (u == t[q])
{
q = q - 1;
}
}
}
}