mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-11 16:06:04 -06:00
831 lines
40 KiB
C++
831 lines
40 KiB
C++
|
/////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// Copyright (C) Statoil ASA
|
||
|
// Copyright (C) Ceetron Solutions AS
|
||
|
//
|
||
|
// ResInsight is free software: you can redistribute it and/or modify
|
||
|
// it under the terms of the GNU General Public License as published by
|
||
|
// the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||
|
// for more details.
|
||
|
//
|
||
|
/////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#include "RivCrossSectionGeometryGenerator.h"
|
||
|
#include "cvfBoundingBox.h"
|
||
|
#include "RigMainGrid.h"
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
///
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
RivCrossSectionGeometryGenerator::~RivCrossSectionGeometryGenerator()
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
/// Find intersection between a line segment and a plane
|
||
|
///
|
||
|
/// \param a Start of line segment
|
||
|
/// \param b End of line segment
|
||
|
/// \param intersection Returns intersection point along the infinite line defined by a-b
|
||
|
/// \param normalizedDistFromA Returns the normalized (0..1) position from a to b of the intersection point.
|
||
|
/// Will return values along the complete line, and HUGE_VAL if plane and line are parallel.
|
||
|
///
|
||
|
/// \return True if line segment intersects the plane
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
bool planeLineIntersect(const cvf::Plane& plane, const cvf::Vec3d& a, const cvf::Vec3d& b, cvf::Vec3d* intersection, double* normalizedDistFromA)
|
||
|
{
|
||
|
// From Real-Time Collision Detection by Christer Eriscon, published by Morgen Kaufmann Publishers, (c) 2005 Elsevier Inc
|
||
|
|
||
|
cvf::Vec3d ab = b - a;
|
||
|
cvf::Vec3d normal = plane.normal();
|
||
|
|
||
|
double normDotAB = normal * ab;
|
||
|
if (normDotAB == 0)
|
||
|
{
|
||
|
(*normalizedDistFromA) = HUGE_VAL;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
double interpolationParameter = (-plane.D() - (normal * a)) / normDotAB;
|
||
|
|
||
|
(*intersection) = a + interpolationParameter * ab;
|
||
|
(*normalizedDistFromA) = interpolationParameter;
|
||
|
|
||
|
return (interpolationParameter >= 0.0 && interpolationParameter <= 1.0);
|
||
|
}
|
||
|
|
||
|
|
||
|
struct ClipVx
|
||
|
{
|
||
|
cvf::Vec3d vx;
|
||
|
double normDistFromEdgeVx1;
|
||
|
int clippedEdgeVx1Id;
|
||
|
int clippedEdgeVx2Id;
|
||
|
};
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
/// Returns whether the triangle was hit by the plane
|
||
|
/// isMostVxesOnPositiveSide returns true if all or two of the vxes is on the positive side of the plane
|
||
|
/// newVx1/2.vx1ClippedEdge returns the index of the single vx that is alone on one side
|
||
|
/// Going newVx1 to newVx2 will make the top triangle same winding as the original triangle,
|
||
|
/// and thus the quad opposite winding
|
||
|
|
||
|
// Except for the trivial cases where all vertices are in front
|
||
|
// or behind plane, these are the permutations
|
||
|
//
|
||
|
// Single vertex on positive side of plane
|
||
|
// => return a triangle
|
||
|
//
|
||
|
// +\ /\c /\c /+ /\c .
|
||
|
// \ / \ / \ / + / \ + .
|
||
|
// \ \ / \/ ---/----\--- .
|
||
|
// / \ \ / /\ / \ .
|
||
|
// a/___\____\b a/_____/__\b a/________\b .
|
||
|
// +\ /+
|
||
|
//
|
||
|
// Two vertices vertex on positive side of plane
|
||
|
// => return a quad
|
||
|
//
|
||
|
// \+ /\c /\c +/ /\c .
|
||
|
// \ / \ / \ / / \ .
|
||
|
// \ \ / \/ ___/____\___ .
|
||
|
// / \ \ / /\ + / \ + .
|
||
|
// a/___\____\b a/_____/__\b a/________\b .
|
||
|
// \+ +/
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
|
||
|
bool planeTriangleIntersection(const cvf::Plane& plane,
|
||
|
const cvf::Vec3d& p1, int p1Id,
|
||
|
const cvf::Vec3d& p2, int p2Id,
|
||
|
const cvf::Vec3d& p3, int p3Id,
|
||
|
ClipVx* newVx1, ClipVx* newVx2,
|
||
|
bool * isMostVxesOnPositiveSide)
|
||
|
{
|
||
|
int onPosSide[3];
|
||
|
onPosSide[0] = plane.distanceSquared(p1) >= 0 ;
|
||
|
onPosSide[1] = plane.distanceSquared(p2) >= 0 ;
|
||
|
onPosSide[2] = plane.distanceSquared(p3) >= 0 ;
|
||
|
|
||
|
const int numPositiveVertices = onPosSide[0] + onPosSide[1] + onPosSide[2];
|
||
|
|
||
|
// The entire triangle is on the negative side
|
||
|
// Clip everything
|
||
|
if (numPositiveVertices == 0)
|
||
|
{
|
||
|
(*isMostVxesOnPositiveSide) = false;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// All triangle vertices are on the positive side
|
||
|
if (numPositiveVertices == 3)
|
||
|
{
|
||
|
(*isMostVxesOnPositiveSide) = true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
(*isMostVxesOnPositiveSide) = (numPositiveVertices == 2);
|
||
|
|
||
|
int topVx = 0;
|
||
|
if (numPositiveVertices == 1)
|
||
|
{
|
||
|
if (onPosSide[0]) topVx = 1;
|
||
|
if (onPosSide[1]) topVx = 2;
|
||
|
if (onPosSide[2]) topVx = 3;
|
||
|
}
|
||
|
else if (numPositiveVertices == 2)
|
||
|
{
|
||
|
if (!onPosSide[0]) topVx = 1;
|
||
|
if (!onPosSide[1]) topVx = 2;
|
||
|
if (!onPosSide[2]) topVx = 3;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CVF_ASSERT(false);
|
||
|
}
|
||
|
|
||
|
cvf::Vec3d intersection;
|
||
|
double normDistFromP1 = 0;
|
||
|
if (topVx = 1)
|
||
|
{
|
||
|
planeLineIntersect(plane, p1, p2, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p1Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p2Id;
|
||
|
planeLineIntersect(plane, p1, p3, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p1Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p3Id;
|
||
|
}
|
||
|
else if (topVx = 2)
|
||
|
{
|
||
|
planeLineIntersect(plane, p2, p3, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p2Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p3Id;
|
||
|
planeLineIntersect(plane, p2, p1, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p2Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p1Id;
|
||
|
}
|
||
|
else if (topVx = 3)
|
||
|
{
|
||
|
planeLineIntersect(plane, p3, p1, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p3Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p1Id;
|
||
|
planeLineIntersect(plane, p3, p2, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1));
|
||
|
(*newVx1).clippedEdgeVx1Id = p3Id;
|
||
|
(*newVx1).clippedEdgeVx1Id = p2Id;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CVF_ASSERT(false);
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
bool planeTriangleIntersection(const cvf::Plane& plane,
|
||
|
const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3,
|
||
|
ClipVx* newVx1, ClipVx* newVx2)
|
||
|
{
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
#if 0
|
||
|
static void planeHexCellIntersectionOnTriangles(const cvf::Plane& plane,
|
||
|
const cvf::Vec3d hexCorners[8],
|
||
|
const int hexCornersIds[8],
|
||
|
std::vector<ClipVx>* polygon)
|
||
|
{
|
||
|
CVF_ASSERT(polygon != NULL);
|
||
|
|
||
|
int intersectionCount = 0;
|
||
|
|
||
|
std::vector<std::pair<ClipVx, ClipVx> > polygonEdges;
|
||
|
for (int face = 0; face < 6 ; ++face)
|
||
|
{
|
||
|
cvf::ubyte faceVertexIndices[4];
|
||
|
cvf::StructGridInterface::cellFaceVertexIndices(static_cast<cvf::StructGridInterface::FaceType>(face), faceVertexIndices);
|
||
|
|
||
|
ClipVx newVx1;
|
||
|
ClipVx newVx2;
|
||
|
|
||
|
bool isClipped = planeTriangleIntersection(plane,
|
||
|
hexCorners[faceVertexIndices[0]], hexCornersIds[faceVertexIndices[0]],
|
||
|
hexCorners[faceVertexIndices[1]], hexCornersIds[faceVertexIndices[1]],
|
||
|
hexCorners[faceVertexIndices[2]], hexCornersIds[faceVertexIndices[2]],
|
||
|
&newVx1, &newVx2);
|
||
|
if (isClipped)
|
||
|
{
|
||
|
polygonEdges.push_back(std::make_pair(newVx1, newVx2));
|
||
|
}
|
||
|
|
||
|
isClipped = planeTriangleIntersection(plane,
|
||
|
hexCorners[faceVertexIndices[0]], hexCornersIds[faceVertexIndices[0]],
|
||
|
hexCorners[faceVertexIndices[2]], hexCornersIds[faceVertexIndices[2]],
|
||
|
hexCorners[faceVertexIndices[3]], hexCornersIds[faceVertexIndices[3]],
|
||
|
&newVx1, &newVx2);
|
||
|
if (isClipped)
|
||
|
{
|
||
|
polygonEdges.push_back(std::make_pair(newVx1, newVx2));
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
if (polygonEdges.size >= 3)
|
||
|
{
|
||
|
// Sort polygon edges in polygon order.
|
||
|
// Do this by finding polygon vxes cutting the same edge.
|
||
|
// And grow from the first edge
|
||
|
(*polygon).push_back(polygonEdges[0].first);
|
||
|
(*polygon).push_back(polygonEdges[0].second);
|
||
|
//for ()
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
/// Will return the intersection point. If the plane is outside the line, it returns the closest line endpoint
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
cvf::Vec3d planeLineIntersectionForMC(const cvf::Plane& plane, const cvf::Vec3d& p1, const cvf::Vec3d& p2, double* normalizedDistFromP1)
|
||
|
{
|
||
|
// From http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/
|
||
|
//
|
||
|
// P1 (x1,y1,z1) and P2 (x2,y2,z2)
|
||
|
//
|
||
|
// P = P1 + u (P2 - P1)
|
||
|
//
|
||
|
// A*x1 + B*y1 + C*z1 + D
|
||
|
// u = ---------------------------------
|
||
|
// A*(x1-x2) + B*(y1-y2) + C*(z1-z2)
|
||
|
|
||
|
CVF_TIGHT_ASSERT(normalizedDistFromP1);
|
||
|
|
||
|
const cvf::Vec3d v = p2 - p1;
|
||
|
|
||
|
(*normalizedDistFromP1) = 0.0;
|
||
|
|
||
|
double denominator = -(plane.A()*v.x() + plane.B()*v.y() + plane.C()*v.z());
|
||
|
if (denominator != 0)
|
||
|
{
|
||
|
double u = (plane.A()*p1.x() + plane.B()*p1.y() + plane.C()*p1.z() + plane.D())/denominator;
|
||
|
(*normalizedDistFromP1) = u;
|
||
|
if (u > 0.0 && u < 1.0)
|
||
|
{
|
||
|
return (p1 + u*v);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (u >= 1.0)
|
||
|
{
|
||
|
return p2;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return p1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return p1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
///
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
int planeHexIntersectionMC(const cvf::Plane& plane,
|
||
|
const cvf::Vec3d cell[8],
|
||
|
const int hexCornersIds[8],
|
||
|
std::vector<ClipVx>* triangles)
|
||
|
{
|
||
|
|
||
|
// Based on description and implementation from Paul Bourke:
|
||
|
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
|
||
|
|
||
|
static const uint cubeIdxToCutEdgeBitfield[256] =
|
||
|
{
|
||
|
0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
|
||
|
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
|
||
|
0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
|
||
|
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
|
||
|
0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c,
|
||
|
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
|
||
|
0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac,
|
||
|
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
|
||
|
0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c,
|
||
|
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
|
||
|
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc,
|
||
|
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
|
||
|
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c,
|
||
|
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
|
||
|
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc,
|
||
|
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
|
||
|
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
|
||
|
0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
|
||
|
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
|
||
|
0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
|
||
|
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
|
||
|
0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
|
||
|
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
|
||
|
0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460,
|
||
|
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
|
||
|
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0,
|
||
|
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
|
||
|
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230,
|
||
|
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
|
||
|
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190,
|
||
|
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
|
||
|
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
|
||
|
};
|
||
|
|
||
|
static const int cubeIdxToTriangleIndices[256][16] =
|
||
|
{
|
||
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
|
||
|
{ 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 },
|
||
|
{ 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 },
|
||
|
{ 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
|
||
|
{ 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 },
|
||
|
{ 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 },
|
||
|
{ 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
|
||
|
{ 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 },
|
||
|
{ 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 },
|
||
|
{ 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
|
||
|
{ 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 },
|
||
|
{ 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 },
|
||
|
{ 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 },
|
||
|
{ 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 },
|
||
|
{ 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 },
|
||
|
{ 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 },
|
||
|
{ 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
|
||
|
{ 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 },
|
||
|
{ 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
|
||
|
{ 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 },
|
||
|
{ 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 },
|
||
|
{ 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 },
|
||
|
{ 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 },
|
||
|
{ 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 },
|
||
|
{ 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
|
||
|
{ 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 },
|
||
|
{ 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 },
|
||
|
{ 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 },
|
||
|
{ 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
|
||
|
{ 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 },
|
||
|
{ 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 },
|
||
|
{ 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
|
||
|
{ 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 },
|
||
|
{ 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 },
|
||
|
{ 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 },
|
||
|
{ 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 },
|
||
|
{ 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 },
|
||
|
{ 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
|
||
|
{ 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 },
|
||
|
{ 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
|
||
|
{ 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 },
|
||
|
{ 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 },
|
||
|
{ 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 },
|
||
|
{ 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 },
|
||
|
{ 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 },
|
||
|
{ 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 },
|
||
|
{ 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 },
|
||
|
{ 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 },
|
||
|
{ 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 },
|
||
|
{ 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 },
|
||
|
{ 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 },
|
||
|
{ 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 },
|
||
|
{ 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 },
|
||
|
{ 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 },
|
||
|
{ 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 },
|
||
|
{ 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 },
|
||
|
{ 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 },
|
||
|
{ 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 },
|
||
|
{ 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 },
|
||
|
{ 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 },
|
||
|
{ 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 },
|
||
|
{ 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 },
|
||
|
{ 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 },
|
||
|
{ 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 },
|
||
|
{ 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 },
|
||
|
{ 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 },
|
||
|
{ 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 },
|
||
|
{ 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 },
|
||
|
{ 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 },
|
||
|
{ 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 },
|
||
|
{ 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 },
|
||
|
{ 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 },
|
||
|
{ 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 },
|
||
|
{ 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 },
|
||
|
{ 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 },
|
||
|
{ 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 },
|
||
|
{ 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 },
|
||
|
{ 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 },
|
||
|
{ 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 },
|
||
|
{ 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 },
|
||
|
{ 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 },
|
||
|
{ 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 },
|
||
|
{ 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 },
|
||
|
{ 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 },
|
||
|
{ 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 },
|
||
|
{ 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 },
|
||
|
{ 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 },
|
||
|
{ 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 },
|
||
|
{ 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 },
|
||
|
{ 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 },
|
||
|
{ 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 },
|
||
|
{ 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 },
|
||
|
{ 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 },
|
||
|
{ 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 },
|
||
|
{ 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 },
|
||
|
{ 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 },
|
||
|
{ 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 },
|
||
|
{ 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 },
|
||
|
{ 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 },
|
||
|
{ 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 },
|
||
|
{ 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 },
|
||
|
{ 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 },
|
||
|
{ 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 },
|
||
|
{ 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 },
|
||
|
{ 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
||
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }
|
||
|
};
|
||
|
|
||
|
static const int edgeTable[12][2] =
|
||
|
{
|
||
|
{0, 1},
|
||
|
{1, 2},
|
||
|
{2, 3},
|
||
|
{3, 0},
|
||
|
{4, 5},
|
||
|
{5, 6},
|
||
|
{6, 7},
|
||
|
{7, 4},
|
||
|
{0, 4},
|
||
|
{1, 5},
|
||
|
{2, 6},
|
||
|
{3, 7}
|
||
|
};
|
||
|
|
||
|
int cubeIndex = 0;
|
||
|
if (plane.distanceSquared(cell[0]) < 0) cubeIndex |= 1;
|
||
|
if (plane.distanceSquared(cell[1]) < 0) cubeIndex |= 2;
|
||
|
if (plane.distanceSquared(cell[2]) < 0) cubeIndex |= 4;
|
||
|
if (plane.distanceSquared(cell[3]) < 0) cubeIndex |= 8;
|
||
|
if (plane.distanceSquared(cell[4]) < 0) cubeIndex |= 16;
|
||
|
if (plane.distanceSquared(cell[5]) < 0) cubeIndex |= 32;
|
||
|
if (plane.distanceSquared(cell[6]) < 0) cubeIndex |= 64;
|
||
|
if (plane.distanceSquared(cell[7]) < 0) cubeIndex |= 128;
|
||
|
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] == 0)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
cvf::Vec3d edgeIntersections[12];
|
||
|
double normDistAlongEdge[12];
|
||
|
|
||
|
|
||
|
// Compute vertex coordinates on the edges where we have intersections
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1) edgeIntersections[0] = planeLineIntersectionForMC(plane, cell[0], cell[1], &normDistAlongEdge[0] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2) edgeIntersections[1] = planeLineIntersectionForMC(plane, cell[1], cell[2], &normDistAlongEdge[1] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 4) edgeIntersections[2] = planeLineIntersectionForMC(plane, cell[2], cell[3], &normDistAlongEdge[2] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 8) edgeIntersections[3] = planeLineIntersectionForMC(plane, cell[3], cell[0], &normDistAlongEdge[3] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 16) edgeIntersections[4] = planeLineIntersectionForMC(plane, cell[4], cell[5], &normDistAlongEdge[4] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 32) edgeIntersections[5] = planeLineIntersectionForMC(plane, cell[5], cell[6], &normDistAlongEdge[5] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 64) edgeIntersections[6] = planeLineIntersectionForMC(plane, cell[6], cell[7], &normDistAlongEdge[6] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 128) edgeIntersections[7] = planeLineIntersectionForMC(plane, cell[7], cell[4], &normDistAlongEdge[7] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 256) edgeIntersections[8] = planeLineIntersectionForMC(plane, cell[0], cell[4], &normDistAlongEdge[8] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 512) edgeIntersections[9] = planeLineIntersectionForMC(plane, cell[1], cell[5], &normDistAlongEdge[9] );
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1024) edgeIntersections[10] = planeLineIntersectionForMC(plane, cell[2], cell[6], &normDistAlongEdge[10]);
|
||
|
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2048) edgeIntersections[11] = planeLineIntersectionForMC(plane, cell[3], cell[7], &normDistAlongEdge[11]);
|
||
|
|
||
|
|
||
|
// Create the triangles
|
||
|
|
||
|
const int* triConnects = cubeIdxToTriangleIndices[cubeIndex];
|
||
|
uint n = 0;
|
||
|
int edgeIdx = triConnects[n];
|
||
|
while (edgeIdx != -1)
|
||
|
{
|
||
|
ClipVx cvx;
|
||
|
cvx.vx = edgeIntersections[edgeIdx];
|
||
|
cvx.normDistFromEdgeVx1 = normDistAlongEdge[edgeIdx];
|
||
|
cvx.clippedEdgeVx1Id = hexCornersIds[edgeTable[edgeIdx][0]];
|
||
|
cvx.clippedEdgeVx2Id = hexCornersIds[edgeTable[edgeIdx][1]];
|
||
|
|
||
|
(*triangles).push_back(cvx);
|
||
|
++n;
|
||
|
edgeIdx = triConnects[n];
|
||
|
}
|
||
|
|
||
|
uint numTriangles = n/3;
|
||
|
|
||
|
return numTriangles;
|
||
|
}
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
///
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
RivCrossSectionGeometryGenerator::RivCrossSectionGeometryGenerator(const std::vector<cvf::Vec3d> &polyline,
|
||
|
const cvf::Vec3d& extrusionDirection,
|
||
|
const RigMainGrid* grid)
|
||
|
{
|
||
|
cvf::BoundingBox gridBBox = grid->boundingBox();
|
||
|
cvf::Vec3d extDir = extrusionDirection.getNormalized();
|
||
|
|
||
|
size_t lineCount = polyline.size();
|
||
|
for (size_t lIdx = 0; lIdx < lineCount - 1; ++lIdx)
|
||
|
{
|
||
|
cvf::Vec3d p1 = polyline[lIdx];
|
||
|
cvf::Vec3d p2 = polyline[lIdx+1];
|
||
|
|
||
|
cvf::BoundingBox sectionBBox;
|
||
|
sectionBBox.add(p1);
|
||
|
sectionBBox.add(p1);
|
||
|
double maxSectionHeight = gridBBox.radius();
|
||
|
sectionBBox.add(p1 + extDir*maxSectionHeight);
|
||
|
sectionBBox.add(p1 - extDir*maxSectionHeight);
|
||
|
sectionBBox.add(p2 + extDir*maxSectionHeight);
|
||
|
sectionBBox.add(p2 - extDir*maxSectionHeight);
|
||
|
|
||
|
std::vector<size_t> columnCellCandidates;
|
||
|
grid->findIntersectingCells(sectionBBox, &columnCellCandidates);
|
||
|
|
||
|
cvf::Plane plane;
|
||
|
plane.setFromPoints(p1, p2, p2 + extDir*maxSectionHeight);
|
||
|
|
||
|
cvf::Plane p1Plane;
|
||
|
p1Plane.setFromPoints(p1, p1 + extDir*maxSectionHeight, p1 + plane.normal());
|
||
|
cvf::Plane p2Plane;
|
||
|
p2Plane.setFromPoints(p2, p2 + extDir*maxSectionHeight, p2 + plane.normal() );
|
||
|
|
||
|
|
||
|
std::vector<ClipVx> triangleVxes;
|
||
|
triangleVxes.reserve(5*3);
|
||
|
|
||
|
for (size_t cccIdx = 0; cccIdx < columnCellCandidates.size(); ++cccIdx)
|
||
|
{
|
||
|
triangleVxes.clear();
|
||
|
size_t globalCellIdx = columnCellCandidates[cccIdx];
|
||
|
|
||
|
cvf::Vec3d cellCorners[8];
|
||
|
grid->cellCornerVertices(globalCellIdx, cellCorners);
|
||
|
|
||
|
const caf::SizeTArray8& cornerIndices = grid->cells()[globalCellIdx].cornerIndices();
|
||
|
int hexCornersIds[8];
|
||
|
hexCornersIds[0] = static_cast<int>(cornerIndices[0]);
|
||
|
hexCornersIds[1] = static_cast<int>(cornerIndices[1]);
|
||
|
hexCornersIds[2] = static_cast<int>(cornerIndices[2]);
|
||
|
hexCornersIds[3] = static_cast<int>(cornerIndices[3]);
|
||
|
hexCornersIds[4] = static_cast<int>(cornerIndices[4]);
|
||
|
hexCornersIds[5] = static_cast<int>(cornerIndices[5]);
|
||
|
hexCornersIds[6] = static_cast<int>(cornerIndices[6]);
|
||
|
hexCornersIds[7] = static_cast<int>(cornerIndices[7]);
|
||
|
|
||
|
uint triangleCount = planeHexIntersectionMC(plane,
|
||
|
cellCorners,
|
||
|
hexCornersIds,
|
||
|
&triangleVxes);
|
||
|
|
||
|
if (triangleCount)
|
||
|
{
|
||
|
#if 1
|
||
|
for (int tIdx = 0; tIdx < triangleCount; ++tIdx)
|
||
|
{
|
||
|
// Accumulate to geometry
|
||
|
int triVxIdx = tIdx*3;
|
||
|
m_triangleVxes.push_back(triangleVxes[triVxIdx+0].vx);
|
||
|
m_triangleVxes.push_back(triangleVxes[triVxIdx+1].vx);
|
||
|
m_triangleVxes.push_back(triangleVxes[triVxIdx+2].vx);
|
||
|
|
||
|
m_triangleToCellIdxMap.push_back(globalCellIdx);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
// Clip triangles with plane 1
|
||
|
std::vector<ClipVx> clippedTriangleVxes;
|
||
|
for (int triVxIdx = 0; tIdx < triangleCount; ++tIdx)
|
||
|
{
|
||
|
ClipVx newVx1;
|
||
|
ClipVx newVx2;
|
||
|
bool isMostVxesOnPositiveSide = false;
|
||
|
int triVxIdx = tIdx*3;
|
||
|
bool isIntersecting = planeTriangleIntersection(p1Plane,
|
||
|
triangleVxes[triVxIdx + 0].vx, triVxIdx + 0,
|
||
|
triangleVxes[triVxIdx + 1].vx, triVxIdx + 1,
|
||
|
triangleVxes[triVxIdx + 2].vx, triVxIdx + 2,
|
||
|
&newVx1, &newVx2, &isMostVxesOnPositiveSide);
|
||
|
|
||
|
if (!isIntersecting && !isMostVxesOnPositiveSide)
|
||
|
{
|
||
|
// Discard triangle
|
||
|
}
|
||
|
else if (!isIntersecting && isMostVxesOnPositiveSide)
|
||
|
{
|
||
|
// Keep the triangle
|
||
|
clippedTriangleVxes.push_back(triangleVxes[triVxIdx + 0]);
|
||
|
clippedTriangleVxes.push_back(triangleVxes[triVxIdx + 1]);
|
||
|
clippedTriangleVxes.push_back(triangleVxes[triVxIdx + 2]);
|
||
|
}
|
||
|
else if (isIntersecting && isMostVxesOnPositiveSide)
|
||
|
{
|
||
|
// Split the resulting quad and add the two triangles
|
||
|
clippedTriangleVxes.push_back(newVx2);
|
||
|
clippedTriangleVxes.push_back(newVx1);
|
||
|
clippedTriangleVxes.push_back(triangleVxes[newVx1.clippedEdgeVx2Id]);
|
||
|
|
||
|
clippedTriangleVxes.push_back(triangleVxes[newVx1.clippedEdgeVx2Id]);
|
||
|
clippedTriangleVxes.push_back(triangleVxes[newVx2.clippedEdgeVx2Id]);
|
||
|
clippedTriangleVxes.push_back(newVx2);
|
||
|
|
||
|
}
|
||
|
else if (isIntersecting && !isMostVxesOnPositiveSide)
|
||
|
{
|
||
|
// Add the top triangle
|
||
|
clippedTriangleVxes.push_back(newVx1);
|
||
|
clippedTriangleVxes.push_back(newVx2);
|
||
|
clippedTriangleVxes.push_back(triangleVxes[newVx1.clippedEdgeVx1Id]);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Clip triangles with plane 2
|
||
|
for (int triVxIdx = 0; tIdx < triangleCount; ++tIdx)
|
||
|
{
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
for (int triVxIdx = 0; tIdx < triangleCount; ++tIdx)
|
||
|
{
|
||
|
|
||
|
// Accumulate to geometry
|
||
|
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|