ResInsight/ApplicationLibCode/GeoMech/GeoMechDataModel/RigFemPartResultCalculatorStressAnisotropy.cpp

259 lines
13 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultCalculatorStressAnisotropy.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemScalarResultFrames.h"
#include "cafProgressInfo.h"
#include <QString>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorStressAnisotropy::RigFemPartResultCalculatorStressAnisotropy( RigFemPartResultsCollection& collection )
: RigFemPartResultCalculator( collection )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorStressAnisotropy::~RigFemPartResultCalculatorStressAnisotropy()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorStressAnisotropy::isMatching( const RigFemResultAddress& resVarAddr ) const
{
return isAnisotropyResult( resVarAddr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorStressAnisotropy::calculate( int partIndex,
const RigFemResultAddress& resVarAddr )
{
CVF_ASSERT( isMatching( resVarAddr ) );
caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 4, "" );
frameCountProgress.setProgressDescription(
"Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) );
RigFemScalarResultFrames* s1Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S1.", m_resultCollection->frameCount() );
s1Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S1" ) );
}
RigFemScalarResultFrames* s2Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S2.", m_resultCollection->frameCount() );
s2Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S2" ) );
}
RigFemScalarResultFrames* s3Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S3.", m_resultCollection->frameCount() );
s3Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S3" ) );
}
RigFemScalarResultFrames* s12Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA12" ) );
RigFemScalarResultFrames* s13Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA13" ) );
RigFemScalarResultFrames* s23Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA23" ) );
int frameCount = s1Frames->frameCount();
for ( int fIdx = 0; fIdx < frameCount; ++fIdx )
{
auto task = frameCountProgress.task( QString( "Calculating %1/%2." ).arg( fIdx ).arg( frameCount - 1 ) );
const std::vector<float>& s1 = s1Frames->frameData( fIdx );
const std::vector<float>& s2 = s2Frames->frameData( fIdx );
const std::vector<float>& s3 = s3Frames->frameData( fIdx );
std::vector<float>& s12 = s12Frames->frameData( fIdx );
std::vector<float>& s13 = s13Frames->frameData( fIdx );
std::vector<float>& s23 = s23Frames->frameData( fIdx );
size_t valCount = s1.size();
s12.resize( valCount );
s13.resize( valCount );
s23.resize( valCount );
#pragma omp parallel for schedule( dynamic )
for ( long vIdx = 0; vIdx < static_cast<long>( valCount ); ++vIdx )
{
s12[vIdx] = 2.0 * ( s1[vIdx] - s2[vIdx] ) / ( s1[vIdx] + s2[vIdx] );
s13[vIdx] = 2.0 * ( s1[vIdx] - s3[vIdx] ) / ( s1[vIdx] + s3[vIdx] );
s23[vIdx] = 2.0 * ( s2[vIdx] - s3[vIdx] ) / ( s2[vIdx] + s3[vIdx] );
}
}
RigFemScalarResultFrames* requestedStress = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr );
return requestedStress;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames*
RigFemPartResultCalculatorStressAnisotropy::calculateTimeLapse( int partIndex, const RigFemResultAddress& resVarAddr )
{
CVF_ASSERT( isMatching( resVarAddr ) );
caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 4, "" );
frameCountProgress.setProgressDescription(
"Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) );
RigFemScalarResultFrames* s1Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S1.", m_resultCollection->frameCount() );
s1Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S1" ) );
}
RigFemScalarResultFrames* s2Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S2.", m_resultCollection->frameCount() );
s2Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S2" ) );
}
RigFemScalarResultFrames* s3Frames = nullptr;
{
auto task = frameCountProgress.task( "Loading S3.", m_resultCollection->frameCount() );
s3Frames = m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"S3" ) );
}
RigFemScalarResultFrames* s12Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"SA12",
resVarAddr.timeLapseBaseFrameIdx ) );
RigFemScalarResultFrames* s13Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"SA13",
resVarAddr.timeLapseBaseFrameIdx ) );
RigFemScalarResultFrames* s23Frames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType,
resVarAddr.fieldName,
"SA23",
resVarAddr.timeLapseBaseFrameIdx ) );
float inf = std::numeric_limits<float>::infinity();
int frameCount = s1Frames->frameCount();
int baseTimeStep = resVarAddr.timeLapseBaseFrameIdx;
for ( int fIdx = 0; fIdx < frameCount; ++fIdx )
{
auto task = frameCountProgress.task( QString( "Calculating %1/%2." ).arg( fIdx ).arg( frameCount - 1 ) );
const std::vector<float>& s1t = s1Frames->frameData( fIdx );
const std::vector<float>& s2t = s2Frames->frameData( fIdx );
const std::vector<float>& s3t = s3Frames->frameData( fIdx );
const std::vector<float>& s1b = s1Frames->frameData( baseTimeStep );
const std::vector<float>& s2b = s2Frames->frameData( baseTimeStep );
const std::vector<float>& s3b = s3Frames->frameData( baseTimeStep );
std::vector<float>& s12 = s12Frames->frameData( fIdx );
std::vector<float>& s13 = s13Frames->frameData( fIdx );
std::vector<float>& s23 = s23Frames->frameData( fIdx );
size_t valCount = s1t.size();
s12.resize( valCount, 0.0 );
s13.resize( valCount, 0.0 );
s23.resize( valCount, 0.0 );
2020-09-30 03:33:22 -05:00
double epsilon = 0.0000001;
#pragma omp parallel for schedule( dynamic )
for ( long vIdx = 0; vIdx < static_cast<long>( valCount ); ++vIdx )
{
if ( fIdx != baseTimeStep )
{
double diffS1 = s1t[vIdx] - s1b[vIdx];
double diffS2 = s2t[vIdx] - s2b[vIdx];
double diffS3 = s3t[vIdx] - s3b[vIdx];
2020-09-30 03:33:22 -05:00
if ( std::abs( diffS1 + diffS2 ) > epsilon )
s12[vIdx] = 2.0 * ( diffS1 - diffS2 ) / ( diffS1 + diffS2 );
else
s12[vIdx] = inf;
2020-09-30 03:33:22 -05:00
if ( std::abs( diffS1 + diffS3 ) > epsilon )
s13[vIdx] = 2.0 * ( diffS1 - diffS3 ) / ( diffS1 + diffS3 );
else
s13[vIdx] = inf;
2020-09-30 03:33:22 -05:00
if ( std::abs( diffS2 + diffS3 ) > epsilon )
s23[vIdx] = 2.0 * ( diffS2 - diffS3 ) / ( diffS2 + diffS3 );
else
s23[vIdx] = inf;
}
}
}
RigFemScalarResultFrames* requestedStress = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr );
return requestedStress;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorStressAnisotropy::isAnisotropyResult( const RigFemResultAddress& resVarAddr )
{
return ( ( ( resVarAddr.fieldName == "ST" || resVarAddr.fieldName == "SE" ) &&
( resVarAddr.componentName == "SA12" || resVarAddr.componentName == "SA13" ||
resVarAddr.componentName == "SA23" ) ) );
}