ResInsight/ApplicationCode/FileInterface/RifReaderEclipseOutput.cpp

864 lines
33 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "cvfBase.h"
#include "RigMainGrid.h"
#include "RigReservoir.h"
2012-06-26 09:10:41 -05:00
#include "RigReservoirCellResults.h"
2012-06-26 09:10:41 -05:00
#include "RifReaderEclipseOutput.h"
#include "RifEclipseOutputFileTools.h"
#include "RifEclipseUnifiedRestartFileAccess.h"
#include "RifEclipseRestartFilesetAccess.h"
#include "RifReaderInterface.h"
#include <iostream>
#include "ecl_grid.h"
#include "well_state.h"
2012-06-26 09:10:41 -05:00
#include "cafProgressInfo.h"
//--------------------------------------------------------------------------------------------------
/// ECLIPSE cell numbering layout:
/// Lower layer: Upper layer
///
/// 2---3 6---7
/// | | | |
/// 0---1 4---5
///
///
///
//--------------------------------------------------------------------------------------------------
// The indexing conventions for vertices in ECLIPSE
//
// 6-------------7
// /| /|
// / | / |
// / | / |
// 4-------------5 |
// | | | |
// | 2---------|---3
// | / | /
// | / | /
// |/ |/
// 0-------------1
// vertex indices
//
// The indexing conventions for vertices in ResInsight
//
// 7-------------6 |k
// /| /| | /j
// / | / | |/
// / | / | *---i
// 4-------------5 |
// | | | |
// | 3---------|---2
// | / | /
// | / | /
// |/ |/
// 0-------------1
// vertex indices
//
static const size_t cellMappingECLRi[8] = { 0, 1, 3, 2, 4, 5, 7, 6 };
//**************************************************************************************************
// Static functions
//**************************************************************************************************
2013-01-30 02:30:48 -06:00
bool transferGridCellData(RigMainGrid* mainGrid, RigGridBase* localGrid, const ecl_grid_type* localEclGrid, size_t matrixActiveStartIndex, size_t fractureActiveStartIndex)
{
int cellCount = ecl_grid_get_global_size(localEclGrid);
size_t cellStartIndex = mainGrid->cells().size();
size_t nodeStartIndex = mainGrid->nodes().size();
RigCell defaultCell;
defaultCell.setHostGrid(localGrid);
mainGrid->cells().resize(cellStartIndex + cellCount, defaultCell);
mainGrid->nodes().resize(nodeStartIndex + cellCount*8, cvf::Vec3d(0,0,0));
int progTicks = 100;
double cellsPrProgressTick = cellCount/(float)progTicks;
caf::ProgressInfo progInfo(progTicks, "");
2012-06-26 09:10:41 -05:00
size_t computedCellCount = 0;
// Loop over cells and fill them with data
#pragma omp parallel for
for (int gIdx = 0; gIdx < cellCount; ++gIdx)
{
RigCell& cell = mainGrid->cells()[cellStartIndex + gIdx];
bool invalid = ecl_grid_cell_invalid1(localEclGrid, gIdx);
cell.setInvalid(invalid);
cell.setCellIndex(gIdx);
// Active cell index
int matrixActiveIndex = ecl_grid_get_active_index1(localEclGrid, gIdx);
if (matrixActiveIndex != -1)
{
cell.setActiveIndexInMatrixModel(matrixActiveStartIndex + matrixActiveIndex);
}
else
2013-01-30 02:30:48 -06:00
{
2013-01-31 10:21:30 -06:00
cell.setActiveIndexInMatrixModel(cvf::UNDEFINED_SIZE_T);
2013-01-30 02:30:48 -06:00
}
int fractureActiveIndex = ecl_grid_get_active_fracture_index1(localEclGrid, gIdx);
if (fractureActiveIndex != -1)
2013-01-30 02:30:48 -06:00
{
cell.setActiveIndexInFractureModel(fractureActiveStartIndex + fractureActiveIndex);
}
else
{
cell.setActiveIndexInFractureModel(cvf::UNDEFINED_SIZE_T);
2013-01-30 02:30:48 -06:00
}
// Parent cell index
int parentCellIndex = ecl_grid_get_parent_cell1(localEclGrid, gIdx);
if (parentCellIndex == -1)
{
cell.setParentCellIndex(cvf::UNDEFINED_SIZE_T);
}
else
{
cell.setParentCellIndex(parentCellIndex);
}
// Coarse cell info
ecl_coarse_cell_type * coarseCellData = ecl_grid_get_cell_coarse_group1( localEclGrid , gIdx);
cell.setInCoarseCell(coarseCellData != NULL);
// Corner coordinates
int cIdx;
for (cIdx = 0; cIdx < 8; ++cIdx)
{
double * point = mainGrid->nodes()[nodeStartIndex + gIdx * 8 + cellMappingECLRi[cIdx]].ptr();
ecl_grid_get_corner_xyz1(localEclGrid, gIdx, cIdx, &(point[0]), &(point[1]), &(point[2]));
point[2] = -point[2];
cell.cornerIndices()[cIdx] = nodeStartIndex + gIdx*8 + cIdx;
}
// Sub grid in cell
const ecl_grid_type* subGrid = ecl_grid_get_cell_lgr1(localEclGrid, gIdx);
if (subGrid != NULL)
{
int subGridFileIndex = ecl_grid_get_grid_nr(subGrid);
CVF_ASSERT(subGridFileIndex > 0);
cell.setSubGrid(static_cast<RigLocalGrid*>(mainGrid->gridByIndex(subGridFileIndex)));
}
2012-06-26 09:10:41 -05:00
// Mark inactive long pyramid looking cells as invalid
if (!invalid && (cell.isInCoarseCell() || (!cell.isActiveInMatrixModel() && !cell.isActiveInFractureModel()) ) )
{
cell.setInvalid(cell.isLongPyramidCell());
}
2012-06-26 09:10:41 -05:00
#pragma omp atomic
computedCellCount++;
progInfo.setProgress((int)(computedCellCount/cellsPrProgressTick));
}
2012-06-26 09:10:41 -05:00
return true;
}
//==================================================================================================
//
// Class RigReaderInterfaceECL
//
//==================================================================================================
//--------------------------------------------------------------------------------------------------
/// Constructor
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
RifReaderEclipseOutput::RifReaderEclipseOutput()
{
ground();
}
//--------------------------------------------------------------------------------------------------
/// Destructor
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
RifReaderEclipseOutput::~RifReaderEclipseOutput()
{
}
//--------------------------------------------------------------------------------------------------
/// Ground members
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
void RifReaderEclipseOutput::ground()
{
m_fileName.clear();
m_fileSet.clear();
m_timeSteps.clear();
m_mainGrid = NULL;
}
//--------------------------------------------------------------------------------------------------
/// Close interface (for now, no files are kept open after calling methods, so just clear members)
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
void RifReaderEclipseOutput::close()
{
m_ecl_file = NULL;
m_dynamicResultsAccess = NULL;
ground();
}
//--------------------------------------------------------------------------------------------------
/// Read geometry from file given by name into given reservoir object
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
bool RifReaderEclipseOutput::transferGeometry(const ecl_grid_type* mainEclGrid, RigReservoir* reservoir)
{
CVF_ASSERT(reservoir);
if (!mainEclGrid)
{
// Some error
return false;
}
RigMainGrid* mainGrid = reservoir->mainGrid();
{
cvf::Vec3st gridPointDim(0,0,0);
gridPointDim.x() = ecl_grid_get_nx(mainEclGrid) + 1;
gridPointDim.y() = ecl_grid_get_ny(mainEclGrid) + 1;
gridPointDim.z() = ecl_grid_get_nz(mainEclGrid) + 1;
mainGrid->setGridPointDimensions(gridPointDim);
}
// Get and set grid and lgr metadata
size_t totalCellCount = static_cast<size_t>(ecl_grid_get_global_size(mainEclGrid));
int numLGRs = ecl_grid_get_num_lgr(mainEclGrid);
int lgrIdx;
for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx)
{
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx);
std::string lgrName = ecl_grid_get_name(localEclGrid);
cvf::Vec3st gridPointDim(0,0,0);
gridPointDim.x() = ecl_grid_get_nx(localEclGrid) + 1;
gridPointDim.y() = ecl_grid_get_ny(localEclGrid) + 1;
gridPointDim.z() = ecl_grid_get_nz(localEclGrid) + 1;
RigLocalGrid* localGrid = new RigLocalGrid(mainGrid);
mainGrid->addLocalGrid(localGrid);
localGrid->setIndexToStartOfCells(totalCellCount);
localGrid->setGridName(lgrName);
localGrid->setGridPointDimensions(gridPointDim);
totalCellCount += ecl_grid_get_global_size(localEclGrid);
}
// Reserve room for the cells and nodes and fill them with data
mainGrid->cells().reserve(totalCellCount);
mainGrid->nodes().reserve(8*totalCellCount);
caf::ProgressInfo progInfo(3 + numLGRs, "");
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("Main Grid");
progInfo.setNextProgressIncrement(3);
2012-06-26 09:10:41 -05:00
2013-01-30 02:30:48 -06:00
transferGridCellData(mainGrid, mainGrid, mainEclGrid, 0, 0);
progInfo.setProgress(3);
2012-06-26 09:10:41 -05:00
2013-01-30 02:30:48 -06:00
size_t globalMatrixActiveSize = ecl_grid_get_nactive(mainEclGrid);
size_t globalFractureActiveSize = ecl_grid_get_nactive_fracture(mainEclGrid);
mainGrid->setMatrixModelActiveCellCount(globalMatrixActiveSize);
mainGrid->setFractureModelActiveCellCount(globalFractureActiveSize);
for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx)
{
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("LGR number " + QString::number(lgrIdx+1));
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx);
RigLocalGrid* localGrid = static_cast<RigLocalGrid*>(mainGrid->gridByIndex(lgrIdx+1));
transferGridCellData(mainGrid, localGrid, localEclGrid, globalMatrixActiveSize, globalFractureActiveSize);
int activeCellCount = ecl_grid_get_nactive(localEclGrid);
localGrid->setMatrixModelActiveCellCount(activeCellCount);
globalMatrixActiveSize += activeCellCount;
activeCellCount = ecl_grid_get_nactive_fracture(localEclGrid);
localGrid->setFractureModelActiveCellCount(activeCellCount);
globalFractureActiveSize += activeCellCount;
2013-01-30 02:30:48 -06:00
progInfo.setProgress(3 + lgrIdx);
}
mainGrid->setGlobalMatrixModelActiveCellCount(globalMatrixActiveSize);
mainGrid->setGlobalFractureModelActiveCellCount(globalFractureActiveSize);
return true;
}
//--------------------------------------------------------------------------------------------------
/// Open file and read geometry into given reservoir object
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
bool RifReaderEclipseOutput::open(const QString& fileName, RigReservoir* reservoir)
{
CVF_ASSERT(reservoir);
caf::ProgressInfo progInfo(10, "");
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("Reading Grid");
// Make sure everything's closed
close();
// Get set of files
QStringList fileSet;
2012-06-26 09:10:41 -05:00
if (!RifEclipseOutputFileTools::fileSet(fileName, &fileSet)) return false;
// Keep the set of files of interest
m_fileSet = fileSet;
// Read geometry
2012-06-26 09:10:41 -05:00
ecl_grid_type * mainEclGrid = ecl_grid_alloc( fileName.toAscii().data() );
progInfo.setProgress(1);
progInfo.setNextProgressIncrement(6);
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("Transferring grid geometry");
if (!transferGeometry(mainEclGrid, reservoir)) return false;
progInfo.setProgress(7);
progInfo.setProgressDescription("Releasing reader memory");
2012-06-26 09:10:41 -05:00
ecl_grid_free( mainEclGrid );
progInfo.setProgress(8);
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("Reading Result index");
m_mainGrid = reservoir->mainGrid();
reservoir->mainGrid()->results(RifReaderInterface::MATRIX_RESULTS)->setReaderInterface(this);
reservoir->mainGrid()->results(RifReaderInterface::FRACTURE_RESULTS)->setReaderInterface(this);
// Build results meta data
if (!buildMetaData(reservoir)) return false;
progInfo.setProgress(9);
2012-06-26 09:10:41 -05:00
progInfo.setProgressDescription("Reading Well information");
readWellCells(reservoir);
return true;
}
//--------------------------------------------------------------------------------------------------
/// Build meta data - get states and results info
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
bool RifReaderEclipseOutput::buildMetaData(RigReservoir* reservoir)
{
CVF_ASSERT(reservoir);
CVF_ASSERT(m_fileSet.size() > 0);
2012-06-26 09:10:41 -05:00
caf::ProgressInfo progInfo(2,"");
// Create access object for dynamic results
m_dynamicResultsAccess = dynamicResultsAccess(m_fileSet);
if (m_dynamicResultsAccess.isNull())
{
return false;
}
2012-06-26 09:10:41 -05:00
RigReservoirCellResults* matrixModelResults = reservoir->mainGrid()->results(RifReaderInterface::MATRIX_RESULTS);
RigReservoirCellResults* fractureModelResults = reservoir->mainGrid()->results(RifReaderInterface::FRACTURE_RESULTS);
2012-06-26 09:10:41 -05:00
if (m_dynamicResultsAccess.notNull())
{
2012-06-26 09:10:41 -05:00
// Get time steps
m_timeSteps = m_dynamicResultsAccess->timeSteps();
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
m_dynamicResultsAccess->resultNames(&resultNames, &resultNamesDataItemCounts);
{
QStringList matrixResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts, RifReaderInterface::MATRIX_RESULTS, m_dynamicResultsAccess->numTimeSteps());
for (int i = 0; i < matrixResultNames.size(); ++i)
{
size_t resIndex = matrixModelResults->addEmptyScalarResult(RimDefines::DYNAMIC_NATIVE, matrixResultNames[i]);
matrixModelResults->setTimeStepDates(resIndex, m_timeSteps);
}
}
2012-06-26 09:10:41 -05:00
{
QStringList fractureResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts, RifReaderInterface::FRACTURE_RESULTS, m_dynamicResultsAccess->numTimeSteps());
for (int i = 0; i < fractureResultNames.size(); ++i)
{
size_t resIndex = fractureModelResults->addEmptyScalarResult(RimDefines::DYNAMIC_NATIVE, fractureResultNames[i]);
fractureModelResults->setTimeStepDates(resIndex, m_timeSteps);
}
2012-06-26 09:10:41 -05:00
}
}
2012-06-26 09:10:41 -05:00
progInfo.setProgress(1);
QString initFileName = RifEclipseOutputFileTools::fileNameByType(m_fileSet, ECL_INIT_FILE);
if (initFileName.size() > 0)
{
ecl_file_type* ecl_file = ecl_file_open(initFileName.toAscii().data());
if (!ecl_file) return false;
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
RifEclipseOutputFileTools::findKeywordsAndDataItemCounts(ecl_file, &resultNames, &resultNamesDataItemCounts);
2012-08-31 12:12:47 -05:00
{
QStringList matrixResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts, RifReaderInterface::MATRIX_RESULTS, 1);
QList<QDateTime> staticDate;
if (m_timeSteps.size() > 0)
{
staticDate.push_back(m_timeSteps.front());
}
for (int i = 0; i < matrixResultNames.size(); ++i)
{
size_t resIndex = matrixModelResults->addEmptyScalarResult(RimDefines::STATIC_NATIVE, matrixResultNames[i]);
matrixModelResults->setTimeStepDates(resIndex, staticDate);
}
2012-08-31 12:12:47 -05:00
}
2012-06-26 09:10:41 -05:00
{
QStringList fractureResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts, RifReaderInterface::FRACTURE_RESULTS, 1);
QList<QDateTime> staticDate;
if (m_timeSteps.size() > 0)
{
staticDate.push_back(m_timeSteps.front());
}
for (int i = 0; i < fractureResultNames.size(); ++i)
{
size_t resIndex = fractureModelResults->addEmptyScalarResult(RimDefines::STATIC_NATIVE, fractureResultNames[i]);
fractureModelResults->setTimeStepDates(resIndex, staticDate);
}
2012-06-26 09:10:41 -05:00
}
m_ecl_file = ecl_file;
}
return true;
}
//--------------------------------------------------------------------------------------------------
/// Create results access object (.UNRST or .X0001 ... .XNNNN)
//--------------------------------------------------------------------------------------------------
RifEclipseRestartDataAccess* RifReaderEclipseOutput::dynamicResultsAccess(const QStringList& fileSet)
{
2012-06-26 09:10:41 -05:00
RifEclipseRestartDataAccess* resultsAccess = NULL;
// Look for unified restart file
2012-06-26 09:10:41 -05:00
QString unrstFileName = RifEclipseOutputFileTools::fileNameByType(fileSet, ECL_UNIFIED_RESTART_FILE);
if (unrstFileName.size() > 0)
{
resultsAccess = new RifEclipseUnifiedRestartFileAccess();
if (!resultsAccess->open(QStringList(unrstFileName)))
{
delete resultsAccess;
return NULL;
}
}
else
{
// Look for set of restart files (one file per time step)
2012-06-26 09:10:41 -05:00
QStringList restartFiles = RifEclipseOutputFileTools::fileNamesByType(fileSet, ECL_RESTART_FILE);
if (restartFiles.size() > 0)
{
resultsAccess = new RifEclipseRestartFilesetAccess();
if (!resultsAccess->open(restartFiles))
{
delete resultsAccess;
return NULL;
}
}
}
// !! could add support for formatted result files
// !! consider priorities in case multiple types exist (.UNRST, .XNNNN, ...)
return resultsAccess;
}
//--------------------------------------------------------------------------------------------------
/// Get all values of a given static result as doubles
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::staticResult(const QString& result, PorosityModelResultType matrixOrFracture, std::vector<double>* values)
{
CVF_ASSERT(values);
CVF_ASSERT(m_ecl_file);
std::vector<double> fileValues;
size_t numOccurrences = ecl_file_get_num_named_kw(m_ecl_file, result.toAscii().data());
size_t i;
for (i = 0; i < numOccurrences; i++)
{
std::vector<double> partValues;
RifEclipseOutputFileTools::keywordData(m_ecl_file, result, i, &partValues);
fileValues.insert(fileValues.end(), partValues.begin(), partValues.end());
}
extractResultValuesBasedOnPorosityModel(matrixOrFracture, values, fileValues);
return true;
}
//--------------------------------------------------------------------------------------------------
/// Get dynamic result at given step index. Will concatenate values for the main grid and all sub grids.
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::dynamicResult(const QString& result, PorosityModelResultType matrixOrFracture, size_t stepIndex, std::vector<double>* values)
{
CVF_ASSERT(m_dynamicResultsAccess.notNull());
std::vector<double> fileValues;
if (!m_dynamicResultsAccess->results(result, stepIndex, m_mainGrid->gridCount(), &fileValues))
{
return false;
}
extractResultValuesBasedOnPorosityModel(matrixOrFracture, values, fileValues);
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
2012-06-26 09:10:41 -05:00
void RifReaderEclipseOutput::readWellCells(RigReservoir* reservoir)
{
CVF_ASSERT(reservoir);
if (m_dynamicResultsAccess.isNull()) return;
well_info_type* ert_well_info = well_info_alloc(NULL);
if (!ert_well_info) return;
m_dynamicResultsAccess->readWellData(ert_well_info);
RigMainGrid* mainGrid = reservoir->mainGrid();
std::vector<RigGridBase*> grids;
reservoir->allGrids(&grids);
cvf::Collection<RigWellResults> wells;
int wellIdx;
for (wellIdx = 0; wellIdx < well_info_get_num_wells(ert_well_info); wellIdx++)
{
const char* wellName = well_info_iget_well_name(ert_well_info, wellIdx);
CVF_ASSERT(wellName);
cvf::ref<RigWellResults> wellResults = new RigWellResults;
wellResults->m_wellName = wellName;
well_ts_type* ert_well_time_series = well_info_get_ts(ert_well_info , wellName);
int timeStepCount = well_ts_get_size(ert_well_time_series);
wellResults->m_wellCellsTimeSteps.resize(timeStepCount);
int timeIdx;
for (timeIdx = 0; timeIdx < timeStepCount; timeIdx++)
{
well_state_type* ert_well_state = well_ts_iget_state(ert_well_time_series, timeIdx);
RigWellResultFrame& wellResFrame = wellResults->m_wellCellsTimeSteps[timeIdx];
// Build timestamp for well
2012-06-26 09:10:41 -05:00
// Also see RifEclipseOutputFileAccess::timeStepsText for accessing time_t structures
{
time_t stepTime = well_state_get_sim_time(ert_well_state);
wellResFrame.m_timestamp = QDateTime::fromTime_t(stepTime);
}
// Production type
well_type_enum ert_well_type = well_state_get_type(ert_well_state);
if (ert_well_type == PRODUCER)
{
wellResFrame.m_productionType = RigWellResultFrame::PRODUCER;
}
else if (ert_well_type == WATER_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::WATER_INJECTOR;
}
else if (ert_well_type == GAS_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::GAS_INJECTOR;
}
else if (ert_well_type == OIL_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::OIL_INJECTOR;
}
else
{
wellResFrame.m_productionType = RigWellResultFrame::UNDEFINED_PRODUCTION_TYPE;
}
wellResFrame.m_isOpen = well_state_is_open( ert_well_state );
// Loop over all the grids in the model. If we have connections in one, we will discard
// the maingrid connections as they are "duplicates"
bool hasWellConnectionsInLGR = false;
for (size_t gridNr = 1; gridNr < grids.size(); ++gridNr)
{
int branchCount = well_state_iget_lgr_num_branches(ert_well_state, static_cast<int>(gridNr));
if (branchCount > 0)
{
hasWellConnectionsInLGR = true;
break;
}
}
size_t gridNr = hasWellConnectionsInLGR ? 1 : 0;
for (; gridNr < grids.size(); ++gridNr)
{
// Wellhead. If several grids have a wellhead definition for this well, we use tha last one. (Possibly the innermost LGR)
const well_conn_type* ert_wellhead = well_state_iget_wellhead(ert_well_state, static_cast<int>(gridNr));
if (ert_wellhead)
{
int cellI = well_conn_get_i( ert_wellhead );
int cellJ = well_conn_get_j( ert_wellhead );
int cellK = CVF_MAX(0, well_conn_get_k(ert_wellhead)); // Why this ?
if (!grids[gridNr]->isCellValid(cellI, cellJ, cellK))
{
int candidateCellK = findSmallestActiveCellIndexK(grids[gridNr], cellI, cellJ);
if (candidateCellK >= 0)
{
cellK = candidateCellK;
}
else
{
cellK = 0;
}
}
wellResFrame.m_wellHead.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI, cellJ, cellK);
wellResFrame.m_wellHead.m_gridIndex = gridNr;
}
int branchCount = well_state_iget_lgr_num_branches(ert_well_state, static_cast<int>(gridNr));
if (branchCount > 0)
{
if (static_cast<int>(wellResFrame.m_wellResultBranches.size()) < branchCount) wellResFrame.m_wellResultBranches.resize(branchCount);
for (int branchIdx = 0; branchIdx < branchCount; ++branchIdx )
{
// Connections
int connectionCount = well_state_iget_num_lgr_connections(ert_well_state, static_cast<int>(gridNr), branchIdx);
if (connectionCount > 0)
{
RigWellResultBranch& wellSegment = wellResFrame.m_wellResultBranches[branchIdx]; // Is this completely right? Is the branch index actually the same between lgrs ?
wellSegment.m_branchNumber = branchIdx;
size_t existingConnCount = wellSegment.m_wellCells.size();
wellSegment.m_wellCells.resize(existingConnCount + connectionCount);
int connIdx;
for (connIdx = 0; connIdx < connectionCount; connIdx++)
{
const well_conn_type* ert_connection = well_state_iget_lgr_connections( ert_well_state, static_cast<int>(gridNr), branchIdx)[connIdx];
CVF_ASSERT(ert_connection);
RigWellResultCell& data = wellSegment.m_wellCells[existingConnCount + connIdx];
data.m_gridIndex = gridNr;
{
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
bool open = well_conn_open( ert_connection );
int branch = well_conn_get_branch( ert_connection );
int segment = well_conn_get_segment( ert_connection );
if (!grids[gridNr]->isCellValid(cellI, cellJ, cellK))
{
int candidateCellK = findSmallestActiveCellIndexK(grids[gridNr], cellI, cellJ);
if (candidateCellK >= 0)
{
cellK = candidateCellK;
}
else
{
cellK = 0;
}
}
data.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI , cellJ , cellK);
data.m_isOpen = open;
data.m_branchId = branch;
data.m_segmentId = segment;
}
}
}
}
}
}
}
wellResults->computeMappingFromResultTimeIndicesToWellTimeIndices(m_timeSteps);
wells.push_back(wellResults.p());
}
well_info_free(ert_well_info);
reservoir->setWellResults(wells);
}
//--------------------------------------------------------------------------------------------------
// For case DUALPORO, the well K index is reported outside the grid. If this happens,
// for the given IJ position, search from K=0 and upwards for first active cell.
//--------------------------------------------------------------------------------------------------
int RifReaderEclipseOutput::findSmallestActiveCellIndexK(const RigGridBase* grid, int cellI, int cellJ)
{
if (!grid) return -1;
for (int candidateCellK = 0; candidateCellK < grid->cellCountK(); candidateCellK++ )
{
if (grid->isCellActive(cellI, cellJ, candidateCellK))
{
return candidateCellK;
}
}
return -1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RifReaderEclipseOutput::validKeywordsForPorosityModel(const QStringList& keywords, const std::vector<size_t>& keywordDataItemCounts, PorosityModelResultType matrixOrFracture, size_t timeStepCount) const
{
if (keywords.size() != keywordDataItemCounts.size())
{
return QStringList();
}
if (matrixOrFracture == RifReaderInterface::FRACTURE_RESULTS)
{
if (m_mainGrid->globalFractureModelActiveCellCount() == 0)
{
return QStringList();
}
}
QStringList keywordsWithCorrectNumberOfDataItems;
for (int i = 0; i < keywords.size(); i++)
{
QString keyword = keywords[i];
size_t keywordDataCount = keywordDataItemCounts[i];
size_t timeStepsMatrix = keywordDataItemCounts[i] / m_mainGrid->globalMatrixModelActiveCellCount();
size_t timeStepsMatrixRest = keywordDataItemCounts[i] % m_mainGrid->globalMatrixModelActiveCellCount();
size_t timeStepsMatrixAndFracture = keywordDataItemCounts[i] / (m_mainGrid->globalMatrixModelActiveCellCount() + m_mainGrid->globalFractureModelActiveCellCount());
size_t timeStepsMatrixAndFractureRest = keywordDataItemCounts[i] % (m_mainGrid->globalMatrixModelActiveCellCount() + m_mainGrid->globalFractureModelActiveCellCount());
if (matrixOrFracture == RifReaderInterface::MATRIX_RESULTS)
{
if (timeStepsMatrixRest == 0 || timeStepsMatrixAndFractureRest == 0)
{
if (timeStepCount == timeStepsMatrix || timeStepCount == timeStepsMatrixAndFracture)
{
keywordsWithCorrectNumberOfDataItems.push_back(keywords[i]);
}
}
}
else
{
if (timeStepsMatrixAndFractureRest == 0 && timeStepCount == timeStepsMatrixAndFracture)
{
keywordsWithCorrectNumberOfDataItems.push_back(keywords[i]);
}
}
}
return keywordsWithCorrectNumberOfDataItems;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::extractResultValuesBasedOnPorosityModel(PorosityModelResultType matrixOrFracture, std::vector<double>* destinationResultValues, const std::vector<double>& sourceResultValues)
{
if (matrixOrFracture == RifReaderInterface::MATRIX_RESULTS)
{
if (m_mainGrid->globalFractureModelActiveCellCount() == 0)
{
destinationResultValues->insert(destinationResultValues->end(), sourceResultValues.begin(), sourceResultValues.end());
}
else
{
size_t dataItemCount = 0;
size_t sourceStartPosition = 0;
for (size_t i = 0; i < m_mainGrid->gridCount(); i++)
{
size_t matrixActiveCellCount = m_mainGrid->gridByIndex(i)->matrixModelActiveCellCount();
size_t fractureActiveCellCount = m_mainGrid->gridByIndex(i)->matrixModelActiveCellCount();
destinationResultValues->insert(destinationResultValues->end(), sourceResultValues.begin() + sourceStartPosition, sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount);
sourceStartPosition += (matrixActiveCellCount + fractureActiveCellCount);
}
}
}
else
{
size_t dataItemCount = 0;
size_t sourceStartPosition = 0;
for (size_t i = 0; i < m_mainGrid->gridCount(); i++)
{
size_t matrixActiveCellCount = m_mainGrid->gridByIndex(i)->matrixModelActiveCellCount();
size_t fractureActiveCellCount = m_mainGrid->gridByIndex(i)->matrixModelActiveCellCount();
destinationResultValues->insert(destinationResultValues->end(), sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount, sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount + fractureActiveCellCount);
sourceStartPosition += (matrixActiveCellCount + fractureActiveCellCount);
}
}
}