ResInsight/ApplicationLibCode/ResultStatisticsCache/RigStatisticsMath.h

276 lines
7.0 KiB
C
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RiaStatisticsTools.h"
#include <cmath>
#include <cstddef>
#include <set>
#include <vector>
class RigStatisticsMath
{
public:
enum class PercentileStyle
{
REGULAR,
SWITCHED
};
static void
calculateBasicStatistics( const std::vector<double>& values, double* min, double* max, double* sum, double* range, double* mean, double* dev );
static void calculateStatisticsCurves( const std::vector<double>& values,
double* p10,
double* p50,
double* p90,
double* mean,
PercentileStyle percentileStyle );
static std::vector<double> calculateNearestRankPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions,
PercentileStyle percentileStyle );
static std::vector<double> calculateInterpolatedPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions,
PercentileStyle percentileStyle );
};
//==================================================================================================
/// Class to calculate a histogram, and histogram based p-value estimates
//==================================================================================================
class RigHistogramCalculator
{
public:
RigHistogramCalculator( double min, double max, size_t nBins, std::vector<size_t>* histogram );
void addData( const std::vector<double>& data );
void addData( const std::vector<float>& data );
void addValue( double value );
/// Calculates the estimated percentile from the histogram.
/// the percentile is the domain value at which pVal of the observations are below it.
/// Will only consider observed values between min and max, as all other values are discarded from the histogram
double calculatePercentil( double pVal, RigStatisticsMath::PercentileStyle percentileStyle );
private:
size_t m_maxIndex;
double m_range;
double m_min;
size_t m_observationCount;
std::vector<size_t>* m_histogram;
};
class MinMaxAccumulator
{
public:
MinMaxAccumulator( double initMin = HUGE_VAL, double initMax = -HUGE_VAL )
: max( initMax )
, min( initMin )
{
}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue( val );
}
}
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue( val );
}
}
void addValue( double value )
{
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
if ( value < min )
{
min = value;
}
if ( value > max )
{
max = value;
}
}
}
double max;
double min;
};
class PercentilAccumulator
{
public:
PercentilAccumulator() {}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue( val );
}
}
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue( val );
}
}
void addValue( double value ) { values.push_back( value ); }
void computep10p90( double& p10, double& p90 )
{
double mean = HUGE_VAL;
double p50 = HUGE_VAL;
RigStatisticsMath::calculateStatisticsCurves( values, &p10, &p50, &p90, &mean, RigStatisticsMath::PercentileStyle::SWITCHED );
}
std::vector<double> values;
};
class PosNegAccumulator
{
public:
PosNegAccumulator( double initPos = HUGE_VAL, double initNeg = -HUGE_VAL )
: pos( initPos )
, neg( initNeg )
{
}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue( val );
}
}
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue( val );
}
}
void addValue( double value )
{
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
if ( value < pos && value > 0 )
{
pos = value;
}
if ( value > neg && value < 0 )
{
neg = value;
}
}
}
double pos;
double neg;
};
class SumCountAccumulator
{
public:
SumCountAccumulator( double initSum = 0.0, size_t initCount = 0 )
: valueSum( initSum )
, sampleCount( initCount )
{
}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue( val );
}
}
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue( val );
}
}
void addValue( double value )
{
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
valueSum += value;
++sampleCount;
}
}
double valueSum;
size_t sampleCount;
};
class UniqueValueAccumulator
{
public:
UniqueValueAccumulator() {}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue( val );
}
}
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue( val );
}
}
void addValue( double value )
{
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
uniqueValues.insert( static_cast<int>( value ) );
}
}
std::set<int> uniqueValues;
};