ResInsight/ApplicationCode/UnitTests/exampleSetup.hpp

158 lines
4.6 KiB
C++
Raw Normal View History

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_EXAMPLESETUP_HEADER_INCLUDED
#define OPM_EXAMPLESETUP_HEADER_INCLUDED
#include <opm/flowdiagnostics/ConnectivityGraph.hpp>
#include <opm/flowdiagnostics/ConnectionValues.hpp>
#include <opm/flowdiagnostics/Toolbox.hpp>
#include <opm/utility/ECLGraph.hpp>
#include <opm/utility/ECLWellSolution.hpp>
#include <exception>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
#include <boost/filesystem.hpp>
namespace example {
inline Opm::FlowDiagnostics::ConnectionValues
extractFluxField(const Opm::ECLGraph& G)
{
using ConnVals = Opm::FlowDiagnostics::ConnectionValues;
using NConn = ConnVals::NumConnections;
using NPhas = ConnVals::NumPhases;
const auto nconn = NConn{G.numConnections()};
const auto nphas = NPhas{3};
auto flux = ConnVals(nconn, nphas);
auto phas = ConnVals::PhaseID{0};
for (const auto& p : { Opm::ECLGraph::PhaseIndex::Aqua ,
Opm::ECLGraph::PhaseIndex::Liquid ,
Opm::ECLGraph::PhaseIndex::Vapour })
{
const std::vector<double> pflux = G.flux(p);
if (! pflux.empty()) {
assert (pflux.size() == nconn.total);
auto conn = ConnVals::ConnID{0};
for (const auto& v : pflux) {
flux(conn, phas) = v;
conn.id += 1;
}
}
phas.id += 1;
}
return flux;
}
template <class WellFluxes>
Opm::FlowDiagnostics::CellSetValues
extractWellFlows(const Opm::ECLGraph& G,
const WellFluxes& well_fluxes)
{
Opm::FlowDiagnostics::CellSetValues inflow;
for (const auto& well : well_fluxes) {
for (const auto& completion : well.completions) {
const int grid_index = completion.grid_index;
const auto& ijk = completion.ijk;
const int cell_index = G.activeCell(ijk, grid_index);
if (cell_index >= 0) {
inflow.emplace(cell_index, completion.reservoir_inflow_rate);
}
}
}
return inflow;
}
namespace Hack {
inline Opm::FlowDiagnostics::ConnectionValues
convert_flux_to_SI(Opm::FlowDiagnostics::ConnectionValues&& fl)
{
using Co = Opm::FlowDiagnostics::ConnectionValues::ConnID;
using Ph = Opm::FlowDiagnostics::ConnectionValues::PhaseID;
const auto nconn = fl.numConnections();
const auto nphas = fl.numPhases();
for (auto phas = Ph{0}; phas.id < nphas; ++phas.id) {
for (auto conn = Co{0}; conn.id < nconn; ++conn.id) {
fl(conn, phas) /= 86400;
}
}
return fl;
}
}
inline Opm::FlowDiagnostics::Toolbox
initialiseFlowDiagnostics(const Opm::ECLGraph& G)
{
const Opm::FlowDiagnostics::ConnectivityGraph connGraph =
Opm::FlowDiagnostics::ConnectivityGraph{ static_cast<int>(G.numCells()),
G.neighbours() };
// Create the Toolbox.
Opm::FlowDiagnostics::Toolbox tool = Opm::FlowDiagnostics::Toolbox{ connGraph };
tool.assignPoreVolume(G.poreVolume());
Opm::FlowDiagnostics::ConnectionValues connectionsVals = Hack::convert_flux_to_SI(extractFluxField(G));
tool.assignConnectionFlux(connectionsVals);
Opm::ECLWellSolution wsol = Opm::ECLWellSolution{};
const std::vector<Opm::ECLWellSolution::WellData> well_fluxes =
wsol.solution(G.rawResultData(), G.numGrids());
tool.assignInflowFlux(extractWellFlows(G, well_fluxes));
return tool;
}
} // namespace example
#endif // OPM_EXAMPLESETUP_HEADER_INCLUDED