ResInsight/ApplicationCode/ReservoirDataModel/RigFishbonesGeometry.cpp

188 lines
6.9 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFishbonesGeometry.h"
#include "RimFishbonesMultipleSubs.h"
#include "cvfAssert.h"
#include "RimWellPath.h"
#include "RigWellPath.h"
#include "cvfMatrix4.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFisbonesGeometry::RigFisbonesGeometry(RimFishbonesMultipleSubs* fishbonesSub)
: m_fishbonesSub(fishbonesSub)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<cvf::Vec3d, double>> RigFisbonesGeometry::coordsForLateral(size_t subIndex, size_t lateralIndex) const
{
CVF_ASSERT(subIndex < m_fishbonesSub->locationOfSubs().size());
CVF_ASSERT(lateralIndex < m_fishbonesSub->lateralLengths().size());
cvf::Vec3d position;
cvf::Vec3d lateralInitialDirection;
cvf::Mat4d buildAngleRotationMatrix;
computeLateralPositionAndOrientation(subIndex, lateralIndex, &position, &lateralInitialDirection, &buildAngleRotationMatrix);
return computeCoordsAlongLateral(m_fishbonesSub->locationOfSubs()[subIndex], m_fishbonesSub->lateralLengths()[lateralIndex], position, lateralInitialDirection, buildAngleRotationMatrix);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFisbonesGeometry::computeLateralPositionAndOrientation(size_t subIndex, size_t lateralIndex, cvf::Vec3d* startCoord, cvf::Vec3d* startDirection, cvf::Mat4d* buildAngleMatrix) const
{
RimWellPath* wellPath = nullptr;
m_fishbonesSub->firstAncestorOrThisOfTypeAsserted(wellPath);
RigWellPath* rigWellPath = wellPath->wellPathGeometry();
CVF_ASSERT(rigWellPath);
double measuredDepth = m_fishbonesSub->locationOfSubs()[subIndex];
cvf::Vec3d position = rigWellPath->interpolatedPointAlongWellPath(measuredDepth);
cvf::Mat4d buildAngleMat;
cvf::Vec3d lateralInitialDirection = cvf::Vec3d::Z_AXIS;
{
cvf::Vec3d p1 = cvf::Vec3d::UNDEFINED;
cvf::Vec3d p2 = cvf::Vec3d::UNDEFINED;
rigWellPath->twoClosestPoints(position, &p1, &p2);
CVF_ASSERT(!p1.isUndefined() && !p2.isUndefined());
cvf::Vec3d lateralDirection;
cvf::Vec3d alongWellPath = (p2 - p1).getNormalized();
if (RigFisbonesGeometry::closestMainAxis(alongWellPath) == cvf::Vec3d::Z_AXIS)
{
// Use Y-AXIS if well path is heading close to Z-AXIS
lateralInitialDirection = cvf::Vec3d::Y_AXIS;
}
{
double intialRotationAngle = m_fishbonesSub->rotationAngle(subIndex);
double lateralOffsetDegrees = 360.0 / m_fishbonesSub->lateralLengths().size();
double lateralOffsetRadians = cvf::Math::toRadians(intialRotationAngle + lateralOffsetDegrees * lateralIndex);
cvf::Mat4d lateralOffsetMatrix = cvf::Mat4d::fromRotation(alongWellPath, lateralOffsetRadians);
lateralInitialDirection = lateralInitialDirection.getTransformedVector(lateralOffsetMatrix);
}
cvf::Vec3d rotationAxis;
rotationAxis.cross(alongWellPath, lateralInitialDirection);
double exitAngleRadians = cvf::Math::toRadians(m_fishbonesSub->exitAngle());
cvf::Mat4d lateralRotationMatrix = cvf::Mat4d::fromRotation(rotationAxis, exitAngleRadians);
lateralDirection = alongWellPath.getTransformedVector(lateralRotationMatrix);
double buildAngleRadians = cvf::Math::toRadians(m_fishbonesSub->buildAngle());
buildAngleMat = cvf::Mat4d::fromRotation(rotationAxis, buildAngleRadians);
}
*startCoord = position;
*startDirection = lateralInitialDirection;
*buildAngleMatrix = buildAngleMat;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<cvf::Vec3d, double>> RigFisbonesGeometry::computeCoordsAlongLateral(double startMeasuredDepth, double lateralLength, const cvf::Vec3d& startCoord, const cvf::Vec3d& startDirection, const cvf::Mat4d& buildAngleMatrix)
{
std::vector<std::pair<cvf::Vec3d, double>> coords;
cvf::Vec3d lateralDirection(startDirection);
// Compute coordinates along the lateral by modifying the lateral direction by the build angle for
// every unit vector along the lateral
cvf::Vec3d accumulatedPosition = startCoord;
double measuredDepth = startMeasuredDepth;
double accumulatedLength = 0.0;
while (accumulatedLength < lateralLength)
{
coords.push_back(std::make_pair(accumulatedPosition, measuredDepth));
double delta = 1.0;
if (lateralLength - accumulatedLength < 1.0)
{
delta = lateralLength - accumulatedLength;
}
accumulatedPosition += delta * lateralDirection;
// Modify the lateral direction by the build angle for each unit vector
lateralDirection = lateralDirection.getTransformedVector(buildAngleMatrix);
accumulatedLength += delta;
measuredDepth += delta;
}
coords.push_back(std::make_pair(accumulatedPosition, measuredDepth));
return coords;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigFisbonesGeometry::closestMainAxis(const cvf::Vec3d& vec)
{
size_t maxComponent = 0;
double maxValue = cvf::Math::abs(vec.x());
if (cvf::Math::abs(vec.y()) > maxValue)
{
maxComponent = 1;
maxValue = cvf::Math::abs(vec.y());
}
if (cvf::Math::abs(vec.z()) > maxValue)
{
maxComponent = 2;
maxValue = cvf::Math::abs(vec.z());
}
if (maxComponent == 0)
{
return cvf::Vec3d::X_AXIS;
}
else if (maxComponent == 1)
{
return cvf::Vec3d::Y_AXIS;
}
else
{
return cvf::Vec3d::Z_AXIS;
}
}