Added MSVC ignores to .gitignore Start point of geometry fixes

This commit is contained in:
Jacob Støren 2013-11-21 10:43:54 +01:00
parent 741debebd2
commit 05200fe01f
5 changed files with 2507 additions and 0 deletions

32
.gitignore vendored
View File

@ -33,3 +33,35 @@ CTest*.cmake
# Target program
/ApplicationCode/ResInsight
/.project
#Visual Studio files
*.[Oo]bj
*.user
*.aps
*.pch
*.vspscc
*.vssscc
*_i.c
*_p.c
*.ncb
*.suo
*.tlb
*.tlh
*.bak
*.[Cc]ache
*.ilk
*.log
*.lib
*.sbr
*.sdf
*.opensdf
*.unsuccessfulbuild
ipch/
[Oo]bj/
[Bb]in
[Dd]ebug*/
[Rr]elease*/
Ankh.NoLoad
#Temp files
*.temp

View File

@ -19,6 +19,8 @@ include_directories(
set( MODEL_VISUALIZATION_CPP_SOURCES
../RivPipeGeometryGenerator.cpp
../cvfGeometryTools.cpp
../cvfBoundingBoxTree.cpp
)
@ -29,6 +31,8 @@ set( CPP_SOURCES
set( UNIT_TEST_CPP_SOURCES
main.cpp
RivPipeGeometryGenerator-Test.cpp
RivCellFaceIntersection-Test.cpp
)

View File

@ -0,0 +1,505 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "gtest/gtest.h"
#include "cvfLibCore.h"
#include "cvfLibViewing.h"
#include "cvfLibRender.h"
#include "cvfLibGeometry.h"
#include "cafFixedArray.h"
#include "cvfArrayWrapperToEdit.h"
#include "cvfArrayWrapperConst.h"
#include "cvfGeometryTools.h"
#include "cvfBoundingBoxTree.h"
using namespace cvf;
#if 0
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void ControlVolume::calculateCubeFaceStatus(const cvf::Vec3dArray& nodeCoords, double areaTolerance)
{
int cubeFace;
cvf::uint cubeFaceIndices[4];
for (cubeFace = 0; cubeFace < 6; ++cubeFace)
{
surfaceNodeIndices(static_cast<Defines::CubeFace>(cubeFace), cubeFaceIndices);
std::vector<const brv::Connection*> conns;
connections(static_cast<Defines::CubeFace>(cubeFace), &conns);
if (!conns.size())
{
m_cubeFaceStatus[cubeFace] = FREE_FACE;
}
else
{
double area = 0.5 * (nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[0]] ^ nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[0]]).length();
area += 0.5 * (nodeCoords[cubeFaceIndices[3]]-nodeCoords[cubeFaceIndices[2]] ^ nodeCoords[cubeFaceIndices[1]]-nodeCoords[cubeFaceIndices[2]]).length();
double totConnectionArea = 0;
size_t i;
for (i = 0; i < conns.size(); ++i)
{
totConnectionArea += conns[i]->brfArea();
}
if ( totConnectionArea < area - areaTolerance )
{
m_cubeFaceStatus[cubeFace] = PARTIALLY_COVERED;
}
else
{
m_cubeFaceStatus[cubeFace] = COMPLETELY_COVERED;
}
}
// Create a polygon to store the complete polygon of the faces
// not completely covered by connections
// This polygon will be filled with nodes later
if (m_cubeFaceStatus[cubeFace] != COMPLETELY_COVERED )
{
m_freeFacePolygons[cubeFace] = new std::list<std::pair<cvf::uint, bool> >;
}
}
}
#endif
template <typename NodeArrayType, typename NodeType, typename IndexType>
NodeType quadNormal (const ArrayWrapperConst<NodeArrayType, NodeType>& nodeCoords,
const IndexType cubeFaceIndices[4] )
{
return ( nodeCoords[cubeFaceIndices[2]] - nodeCoords[cubeFaceIndices[0]]) ^
( nodeCoords[cubeFaceIndices[3]] - nodeCoords[cubeFaceIndices[1]]);
}
#if 1
#endif
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class QuadFaceIntersectorImplHandle
{
public:
virtual ~QuadFaceIntersectorImplHandle() {}
virtual bool intersect() = 0;
};
template < typename NodeArrayType, typename NodeType, typename IndicesArrayType, typename IndicesType>
class QuadFaceIntersectorImpl : public QuadFaceIntersectorImplHandle
{
public:
QuadFaceIntersectorImpl( ArrayWrapperToEdit<NodeArrayType, NodeType> nodeArray, ArrayWrapperToEdit<IndicesArrayType, IndicesType> indices)
: m_nodeArray(nodeArray),
m_indices(indices){}
virtual bool intersect()
{
size_t nodeCount = m_nodeArray.size();
NodeType a = m_nodeArray[0];
IndicesType idx = m_indices[0];
return true;
}
private:
ArrayWrapperToEdit<NodeArrayType, NodeType> m_nodeArray;
ArrayWrapperToEdit<IndicesArrayType, IndicesType> m_indices;
};
class QuadFaceIntersector
{
public:
template <typename NodeArrayType, typename NodeType, typename IndicesArrayType, typename IndicesType>
void setup( ArrayWrapperToEdit<NodeArrayType, NodeType> nodeArray, ArrayWrapperToEdit<IndicesArrayType, IndicesType> indices)
{
m_implementation = new QuadFaceIntersectorImpl< NodeArrayType, NodeType, IndicesArrayType, IndicesType>( nodeArray, indices);
}
bool intersect() { return m_implementation->intersect(); }
private:
QuadFaceIntersectorImplHandle * m_implementation;
};
template <typename ArrayType, typename ElmType>
void arrayWrapperConstTestFunction(const ArrayWrapperConst< ArrayType, ElmType> cinRefArray)
{
ElmType e;
size_t size;
size = cinRefArray.size();
e = cinRefArray[size-1];
// cinRefArray[size-1] = e;
{
const ElmType& cre = cinRefArray[size-1];
//ElmType& re = cinRefArray[size-1];
//re = e;
}
}
template <typename ArrayType, typename ElmType>
void arrayWrapperConstRefTestFunction(const ArrayWrapperConst< ArrayType, ElmType>& cinRefArray)
{
ElmType e;
size_t size;
size = cinRefArray.size();
e = cinRefArray[size-1];
// cinRefArray[size-1] = e;
{
const ElmType& cre = cinRefArray[size-1];
//ElmType& re = cinRefArray[size-1];
//re = e;
}
}
template <typename ArrayType, typename ElmType>
void arrayWrapperTestFunction(ArrayWrapperToEdit< ArrayType, ElmType> cinRefArray)
{
ElmType e, e2;
size_t size;
size = cinRefArray.size();
e = cinRefArray[size-1];
e2 = cinRefArray[0];
cinRefArray[0] = e;
{
const ElmType& cre = cinRefArray[size-1];
ElmType& re = cinRefArray[size-1];
re = e2;
}
}
template <typename ArrayType, typename ElmType>
void arrayWrapperRefTestFunction(ArrayWrapperToEdit< ArrayType, ElmType>& cinRefArray)
{
ElmType e, e2;
size_t size;
size = cinRefArray.size();
e = cinRefArray[size-1];
e2 = cinRefArray[0];
cinRefArray[0] = e;
{
const ElmType& cre = cinRefArray[size-1];
ElmType& re = cinRefArray[size-1];
re = e2;
}
}
std::ostream& operator<< (std::ostream& stream, cvf::Vec3d v)
{
stream << v[0] << " " << v[1] << " " << v[2] ;
return stream;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(ArrayWrapperTest, AllSpecializations)
{
std::vector<cvf::Vec3d> vec3dStdVector;
vec3dStdVector.push_back(Vec3d::ZERO);
vec3dStdVector.push_back(Vec3d(1,1,1));
const std::vector<cvf::Vec3d> &cvec3dStdVector = vec3dStdVector;
cvf::Vec3dArray vec3dCvfArray(vec3dStdVector);
const cvf::Vec3dArray& cvec3dCvfArray = vec3dCvfArray;
cvf::Array<size_t> siztCvfArray(2);
siztCvfArray[0] = 0;
siztCvfArray[1] = 1;
const cvf::Array<size_t>& csiztCvfArray = siztCvfArray;
cvf::Array<uint> uintCvfArray(2);
uintCvfArray[0] = 0;
uintCvfArray[1] = 1;
const cvf::Array<uint>& cuintCvfArray = uintCvfArray;
size_t siztBarePtrArray[2] = {0, 1};
size_t* siztBarePtr = new size_t[2];
siztBarePtr[0] = 0;
siztBarePtr[1] = 1;
const size_t* csiztBarePtr = siztBarePtr;
cvf::uint* uintBarePtr = new cvf::uint[2];
uintBarePtr[0] = 0;
uintBarePtr[1] = 1;
const cvf::uint* cuintBarePtr = uintBarePtr;
double* doubleBarePtr = new double[2];
doubleBarePtr[0] = 0;
doubleBarePtr[1] = 1;
const double* cdoubleBarePtr = doubleBarePtr;
arrayWrapperConstTestFunction(wrapArrayConst(&vec3dStdVector));
arrayWrapperConstTestFunction(wrapArrayConst(&cvec3dStdVector));
arrayWrapperConstTestFunction(wrapArrayConst(&vec3dCvfArray));
arrayWrapperConstTestFunction(wrapArrayConst(&cvec3dCvfArray));
arrayWrapperConstTestFunction(wrapArrayConst(&uintCvfArray));
arrayWrapperConstTestFunction(wrapArrayConst(&cuintCvfArray));
arrayWrapperConstTestFunction(wrapArrayConst(siztBarePtrArray, 2));
arrayWrapperConstTestFunction(wrapArrayConst(siztBarePtr, 2));
arrayWrapperConstTestFunction(wrapArrayConst(csiztBarePtr, 2));
arrayWrapperConstTestFunction(wrapArrayConst(doubleBarePtr,2));
arrayWrapperConstTestFunction(wrapArrayConst(cdoubleBarePtr, 2));
arrayWrapperConstRefTestFunction(wrapArrayConst(&vec3dStdVector));
arrayWrapperConstRefTestFunction(wrapArrayConst(&cvec3dStdVector));
arrayWrapperConstRefTestFunction(wrapArrayConst(&vec3dCvfArray));
arrayWrapperConstRefTestFunction(wrapArrayConst(&cvec3dCvfArray));
arrayWrapperConstRefTestFunction(wrapArrayConst(&uintCvfArray));
arrayWrapperConstRefTestFunction(wrapArrayConst(&cuintCvfArray));
arrayWrapperConstRefTestFunction(wrapArrayConst(siztBarePtrArray, 2));
arrayWrapperConstRefTestFunction(wrapArrayConst(siztBarePtr, 2));
arrayWrapperConstRefTestFunction(wrapArrayConst(csiztBarePtr, 2));
arrayWrapperConstRefTestFunction(wrapArrayConst(doubleBarePtr,2));
arrayWrapperConstRefTestFunction(wrapArrayConst(cdoubleBarePtr, 2));
arrayWrapperTestFunction(wrapArrayToEdit(&vec3dStdVector));
//arrayWrapperTestFunction3(wrapArray(&cvec3dStdVector));
EXPECT_EQ(Vec3d::ZERO, vec3dStdVector[1]);
EXPECT_EQ(Vec3d(1,1,1), vec3dStdVector[0]);
arrayWrapperTestFunction(wrapArrayToEdit(&vec3dCvfArray));
EXPECT_EQ(Vec3d::ZERO, vec3dCvfArray[1]);
EXPECT_EQ(Vec3d(1,1,1), vec3dStdVector[0]);
//arrayWrapperTestFunction3(wrapArray(&cvec3dCvfArray));
arrayWrapperTestFunction(wrapArrayToEdit(&uintCvfArray));
//arrayWrapperTestFunction3(wrapArray(&cuintCvfArray));
arrayWrapperTestFunction(wrapArrayToEdit(siztBarePtrArray, 2));
//arrayWrapperTestFunction3(wrapArray(csiztBarePtr, 2));
arrayWrapperTestFunction(wrapArrayToEdit(doubleBarePtr,2));
//arrayWrapperTestFunction3(wrapArray(cdoubleBarePtr, 2));
EXPECT_EQ(0.0, doubleBarePtr[1]);
EXPECT_EQ(1.0, doubleBarePtr[0]);
arrayWrapperRefTestFunction(wrapArrayToEdit(&vec3dStdVector));
EXPECT_EQ(Vec3d::ZERO, vec3dStdVector[0]);
EXPECT_EQ(Vec3d(1,1,1), vec3dStdVector[1]);
//arrayWrapperRefTestFunction3(wrapArray(&cvec3dStdVector));
arrayWrapperRefTestFunction(wrapArrayToEdit(&vec3dCvfArray));
EXPECT_EQ(Vec3d::ZERO, vec3dCvfArray[0]);
EXPECT_EQ(Vec3d(1,1,1), vec3dStdVector[1]);
//arrayWrapperRefTestFunction3(wrapArray(&cvec3dCvfArray));
arrayWrapperRefTestFunction(wrapArrayToEdit(&uintCvfArray));
//arrayWrapperRefTestFunction3(wrapArray(&cuintCvfArray));
arrayWrapperRefTestFunction(wrapArrayToEdit(siztBarePtrArray, 2));
//arrayWrapperRefTestFunction3(wrapArray(csiztBarePtr, 2));
arrayWrapperRefTestFunction(wrapArrayToEdit(doubleBarePtr,2));
//arrayWrapperRefTestFunction3(wrapArray(cdoubleBarePtr, 2));
EXPECT_EQ(0.0, doubleBarePtr[0]);
EXPECT_EQ(1.0, doubleBarePtr[1]);
}
std::ostream& operator<<(std::ostream& stream, const std::vector<size_t>& array)
{
for (size_t i = 0; i < array.size(); ++i)
{
stream << array[i] << " ";
}
stream << std::endl;
return stream;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(BoundingBoxTree, Intersection)
{
cvf::BoundingBoxTree bbtree;
std::vector<cvf::BoundingBox> bbs;
bbs.push_back(cvf::BoundingBox(Vec3d(0,0,0), Vec3d(1,1,1)));
bbs.push_back(cvf::BoundingBox(Vec3d(1,0,0), Vec3d(2,1,1)));
bbs.push_back(cvf::BoundingBox(Vec3d(2,0,0), Vec3d(3,1,1)));
bbs.push_back(cvf::BoundingBox(Vec3d(3,0,0), Vec3d(4,1,1)));
bbs.push_back(cvf::BoundingBox(Vec3d(4,0,0), Vec3d(5,1,1)));
bbs.push_back(cvf::BoundingBox(Vec3d(0.5,0.5,0), Vec3d(5.5,1.5,1)));
std::vector<size_t> ids;
ids.push_back(10);
ids.push_back(11);
ids.push_back(12);
ids.push_back(13);
ids.push_back(14);
ids.push_back(15);
bbtree.buildTreeFromBoundingBoxes(bbs, &ids);
{
std::vector<size_t> intIds;
bbtree.findIntersections(cvf::BoundingBox(Vec3d(0.25,0.25,0.25), Vec3d(4.5,0.4,0.4)), &intIds);
size_t numBB = intIds.size();
EXPECT_EQ(5, numBB);
EXPECT_EQ(intIds[4], 13);
//std::cout << intIds;
}
{
std::vector<size_t> intIds;
bbtree.findIntersections(cvf::BoundingBox(Vec3d(0.25,0.75,0.25), Vec3d(4.5,0.8,0.4)), &intIds);
size_t numBB = intIds.size();
EXPECT_EQ(6, numBB);
EXPECT_EQ(intIds[5], 15);
//std::cout << intIds;
}
{
std::vector<size_t> intIds;
bbtree.findIntersections(cvf::BoundingBox(Vec3d(2,0,0), Vec3d(3,1,1)), &intIds);
size_t numBB = intIds.size();
EXPECT_EQ(4, numBB);
EXPECT_EQ(intIds[0], 11);
//std::cout << intIds;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, Intersection)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
nodes.resize(8);
nodes.setAll(cvf::Vec3d(0, 0, 0));
EdgeIntersectStorage edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount(nodes.size());
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0, 0, 0);
nodes[5] = cvf::Vec3d(1, 0, 0);
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, edgeIntersectionStorage, nodes, cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
EXPECT_EQ( 4, polygon.size());
EXPECT_EQ( (size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0.5, -0.25, 0);
nodes[5] = cvf::Vec3d(1.25, 0.5, 0);
nodes[6] = cvf::Vec3d(0.5, 1.25, 0);
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, edgeIntersectionStorage, nodes, cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
EXPECT_EQ( 8, polygon.size());
EXPECT_EQ( (size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, FreeFacePolygon)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
nodes.resize(8);
nodes.setAll(cvf::Vec3d(0, 0, 0));
EdgeIntersectStorage edgeIntersectionStorage;
edgeIntersectionStorage.setVertexCount(nodes.size());
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0, 0, 0);
nodes[5] = cvf::Vec3d(1, 0, 0);
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, edgeIntersectionStorage, nodes, cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
EXPECT_EQ( 4, polygon.size());
EXPECT_EQ( (size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
//GeometryTools::calculatePartiallyFreeCubeFacePolygon(nodes, );
// Face 1
nodes[0] = cvf::Vec3d(0, 0, 0);
nodes[1] = cvf::Vec3d(1, 0, 0);
nodes[2] = cvf::Vec3d(1, 1, 0);
nodes[3] = cvf::Vec3d(0, 1, 0);
// Face 2
nodes[4] = cvf::Vec3d(0.5, -0.25, 0);
nodes[5] = cvf::Vec3d(1.25, 0.5, 0);
nodes[6] = cvf::Vec3d(0.5, 1.25, 0);
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, edgeIntersectionStorage, nodes, cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
EXPECT_EQ( 8, polygon.size());
EXPECT_EQ( (size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,152 @@
#pragma once
#include "cvfBase.h"
#include "cvfArray.h"
#include <list>
#include <map>
#include <hash_map>
namespace cvf
{
class EdgeSplitStorage;
class EdgeIntersectStorage;
class GeometryTools
{
public:
static cvf::Vec3d computeFaceCenter(const cvf::Vec3d& v0, const cvf::Vec3d& v1, const cvf::Vec3d& v2, const cvf::Vec3d& v3);
static double linePointSquareDist(const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3);
static int intersectLineSegmentTriangle( const cvf::Vec3d p0, const cvf::Vec3d p1,
const cvf::Vec3d t0, const cvf::Vec3d t1, const cvf::Vec3d t2,
cvf::Vec3d* intersectionPoint );
static cvf::Vec3d barycentricCoords(const cvf::Vec3d& t0, const cvf::Vec3d& t1, const cvf::Vec3d& t2, const cvf::Vec3d& p);
static int findClosestAxis(const cvf::Vec3d& vec );
static double getAngle(const cvf::Vec3d& positiveNormalAxis, const cvf::Vec3d& v1, const cvf::Vec3d& v2);
static double getAngle(const cvf::Vec3d& v1, const cvf::Vec3d& v2);
enum IntersectionStatus
{
NO_INTERSECTION,
LINES_INTERSECT_OUTSIDE,
LINES_TOUCH,
LINES_CROSSES,
LINES_OVERLAP
};
static IntersectionStatus inPlaneLineIntersect3D(const cvf::Vec3d& planeNormal,
const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3, const cvf::Vec3d& p4,
cvf::Vec3d* intersectionPoint, double* fractionAlongLine1, double* fractionAlongLine2,
double tolerance = 1e-6);
static bool isPointTouchingIndexedPolygon(const cvf::Vec3d& polygonNormal, const cvf::Vec3d* vertices, const size_t* indices, size_t numIndices,
const cvf::Vec3d& point, int* touchedEdgeIndex, double tolerance = 1e-6);
static bool insertVertexInPolygon(std::list<std::pair<cvf::uint, bool> >* polygon, const cvf::Vec3dArray& nodeCoords, cvf::uint vertexIndex, double tolerance);
static void addMidEdgeNodes(std::list<std::pair<cvf::uint, bool> >* polygon, const cvf::Vec3dArray& nodes, EdgeSplitStorage& edgeSplitStorage, std::vector<cvf::Vec3d>* createdVertexes);
static bool calculateOverlapPolygonOfTwoQuads( std::vector<size_t> * polygon, std::vector<cvf::Vec3d>* createdVertexes,
EdgeIntersectStorage& edgeIntersectionStorage,
const cvf::Vec3dArray& nodes,
const size_t cv1CubeFaceIndices[4],
const size_t cv2CubeFaceIndices[4],
double tolerance);
static void calculatePartiallyFreeCubeFacePolygon(const cvf::Vec3dArray& nodeCoords,
const std::vector<size_t>* completeFacePolygon,
const cvf::Vec3d& faceNormal,
const std::vector< std::vector<size_t>* >& faceOverlapPolygons,
const std::vector<bool> faceOverlapPolygonWindingSameAsCubeFaceFlags,
std::vector<size_t>* partialFacePolygon,
bool* m_partiallyFreeCubeFaceHasHoles);
};
class EdgeIntersectStorage
{
public:
void setVertexCount(size_t size);
bool findIntersection( size_t e1P1, size_t e1P2, size_t e2P1, size_t e2P2,
size_t* vxIndexIntersectionPoint, GeometryTools::IntersectionStatus* intersectionStatus,
double* fractionAlongEdge1, double* fractionAlongEdge2);
void addIntersection( size_t e1P1, size_t e1P2, size_t e2P1, size_t e2P2,
size_t vxIndexIntersectionPoint, GeometryTools::IntersectionStatus intersectionStatus,
double fractionAlongEdge1, double fractionAlongEdge2);
private:
struct IntersectData
{
size_t intersectionPointIndex;
GeometryTools::IntersectionStatus intersectionStatus;
double fractionAlongEdge1;
double fractionAlongEdge2;
};
void canonizeAddress(size_t& e1P1, size_t& e1P2, size_t& e2P1, size_t& e2P2, bool& flipE1, bool& flipE2, bool& flipE1E2);
// A map containing the intersection data. The addressing is :
// ( when leastVxIdxEdge1 < leastVxIdxEdge2 )
// leastVxIdxEdge1, largestVxIdxEdge1, leastVxIdxEdge2, largestVxIdxEdge2, { vxIdxIntersection, fractionAlongEdg1, fractionAlonEdge2 }
std::vector< std::map<size_t, std::map<size_t, std::map<size_t, IntersectData > > > > m_edgeIntsectMap;
};
class EdgeSplitStorage
{
public:
void setVertexCount(size_t size);
bool findSplitPoint(size_t edgeP1Index, size_t edgeP2Index, size_t* splitPointIndex);
void addSplitPoint(size_t edgeP1Index, size_t edgeP2Index, size_t splitPointIndex);
private:
void canonizeAddress(size_t& e1P1, size_t& e1P2);
// Least VxIdx, LargestVxIdx, VertexIdx of splitpoint
std::vector< std::map< size_t, size_t > > m_edgeSplitMap;
};
class EarClipTesselator
{
public:
EarClipTesselator();
void setNormal(const cvf::Vec3d& polygonNormal );
void setMinTriangleArea(double areaTolerance);
void setGlobalNodeArray(const cvf::Vec3dArray& nodeCoords);
void setPolygonIndices(const std::list<size_t>& polygon);
void setPolygonIndices(const std::vector<size_t>& polygon);
virtual bool calculateTriangles(std::vector<cvf::uint>* triangles);
protected:
bool isTriangleValid( std::list<size_t>::const_iterator u, std::list<size_t>::const_iterator v, std::list<size_t>::const_iterator w) const;
bool isPointInsideTriangle(const cvf::Vec3d& A, const cvf::Vec3d& B, const cvf::Vec3d& C, const cvf::Vec3d& P) const;
double calculatePolygonArea() const;
protected:
std::list<size_t> m_polygonIndices;
const cvf::Vec3dArray* m_nodeCoords;
int m_X, m_Y; // Index shift in vector to do simple 2D projection
cvf::Vec3d m_polygonNormal;
double m_areaTolerance;
};
class FanEarClipTesselator : public EarClipTesselator
{
public:
FanEarClipTesselator();
void setCenterNode(size_t centerNodeIndex );
virtual bool calculateTriangles(std::vector<cvf::uint>* triangles);
private:
bool isTriangleValid( size_t u, size_t v, size_t w);
size_t m_centerNodeIndex;
};
}