Fix automatic part id detection for Fault Reactivation Result, and resampling bug in RigWellLogCurveData

* Fix resampling bug and refactor code
- Fix bug for resampling, prevent index increment.
- Refactor functions into static functions.
- Fix issue in interpolateSegment not using correct indices for depthType != resamplingDepthType
- Add unit tests

* Change WellAllocationPlot to use step left
Remove dummy point and utilize step left for WellAllocationPont

* Fix bug in creating resampled values and depths for RigWellLogCurveData

* Fix automatic part detection for Fault Reactivation Result
- Fix incorrect automatic part detection
- Set default distance to intersection to 1.0 [m]
This commit is contained in:
Jørgen Herje 2023-06-20 10:08:10 +02:00 committed by GitHub
parent 22e9e7aeb0
commit 0685078ab3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 395 additions and 75 deletions

View File

@ -124,6 +124,37 @@ const int* RigFemPart::connectivities( size_t elementIdx ) const
return &m_allElementConnectivities[m_elementConnectivityStartIndices[elementIdx]];
}
//--------------------------------------------------------------------------------------------------
/// Returns state of success for fill element coordinates
//--------------------------------------------------------------------------------------------------
bool RigFemPart::fillElementCoordinates( size_t elementIdx, std::array<cvf::Vec3d, 8>& coordinates ) const
{
const auto elemType = elementType( elementIdx );
const int* elemConnectivity = connectivities( elementIdx );
const auto nodeCount = RigFemTypes::elementNodeCount( elemType );
// Only handle element of hex for now - false success
if ( nodeCount != 8 ) return false;
// Retrieve the node indices
std::vector<int> nodeIndices;
for ( int i = 0; i < nodeCount; ++i )
{
const int nodeIdx = elemConnectivity[i];
nodeIndices.push_back( nodeIdx );
}
// Fill coordinates for each node
const auto& partNodes = nodes();
for ( int i = 0; i < nodeIndices.size(); ++i )
{
coordinates[i].set( partNodes.coordinates[nodeIndices[i]] );
}
// Return true success
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -27,6 +27,7 @@
#include "cvfBoundingBox.h"
#include "cvfObject.h"
#include "cvfVector3.h"
#include <array>
#include <string>
#include <vector>
@ -64,6 +65,8 @@ public:
bool isHexahedron( size_t elementIdx ) const;
const int* connectivities( size_t elementIdx ) const;
bool fillElementCoordinates( size_t elementIdx, std::array<cvf::Vec3d, 8>& coordinates ) const;
size_t elementNodeResultIdx( int elementIdx, int elmLocalNodeIdx ) const;
size_t elementNodeResultCount() const;
int nodeIdxFromElementNodeResultIdx( size_t elmNodeResultIdx ) const;

View File

@ -337,10 +337,6 @@ void RimWellAllocationPlot::updateFromWell()
accFlow = ( m_flowType == ACCUMULATED ? wfCalculator->accumulatedTracerFlowPrConnection( tracerName, brIdx )
: wfCalculator->tracerFlowPrConnection( tracerName, brIdx ) );
// Insert the first depth position again, to add a <maxdepth, 0.0> value pair
curveDepthValues.insert( curveDepthValues.begin(), curveDepthValues[0] );
accFlow.insert( accFlow.begin(), 0.0 );
if ( m_flowType == ACCUMULATED && brIdx == 0 && !accFlow.empty() ) // Add fictitious point to -1
// for first branch
{
@ -474,6 +470,8 @@ void RimWellAllocationPlot::addStackedCurve( const QString& tracerNa
curve->setColor( getTracerColor( tracerName ) );
}
curve->setInterpolation( RiuQwtPlotCurveDefines::CurveInterpolationEnum::INTERPOLATION_STEP_LEFT );
plotTrack->addCurve( curve );
curve->loadDataAndUpdate( true );

View File

@ -27,6 +27,7 @@
#include "RigFemPartCollection.h"
#include "RigGeoMechCaseData.h"
#include "RigHexIntersectionTools.h"
#include "RigReservoirGridTools.h"
#include "RimGeoMechCase.h"
@ -52,6 +53,8 @@
#include "cvfBoundingBox.h"
#include <array>
CAF_PDM_SOURCE_INIT( RimGeoMechFaultReactivationResult, "RimGeoMechFaultReactivationResult" );
//--------------------------------------------------------------------------------------------------
@ -64,7 +67,10 @@ RimGeoMechFaultReactivationResult::RimGeoMechFaultReactivationResult()
CAF_PDM_InitFieldNoDefault( &m_intersection, "Intersection", "Intersection" );
CAF_PDM_InitField( &m_distanceFromIntersection, "FaceDistanceFromIntersection", 0.0, "Face Distance From Intersection" );
CAF_PDM_InitField( &m_distanceFromIntersection,
"FaceDistanceFromIntersection",
m_defaultDistanceFromIntersection,
"Face Distance From Intersection" );
CAF_PDM_InitField( &m_widthOutsideIntersection, "FaceWidthOutsideIntersection", 0.0, "Face Width Outside Intersection" );
CAF_PDM_InitFieldNoDefault( &m_createFaultReactivationResult, "CreateReactivationResult", "" );
@ -156,7 +162,8 @@ void RimGeoMechFaultReactivationResult::fieldChangedByUi( const caf::PdmFieldHan
}
if ( changedField == &m_createFaultReactivationResult && m_intersection() )
{
onLoadDataAndUpdate();
createWellGeometry();
createWellLogCurves();
}
}
@ -172,7 +179,7 @@ void RimGeoMechFaultReactivationResult::defineEditorAttribute( const caf::PdmFie
caf::PdmUiPushButtonEditorAttribute* attrib = dynamic_cast<caf::PdmUiPushButtonEditorAttribute*>( attribute );
if ( attrib )
{
attrib->m_buttonText = "Create";
attrib->m_buttonText = "Create Plot";
}
}
}
@ -332,19 +339,31 @@ void RimGeoMechFaultReactivationResult::createWellLogCurves()
//--------------------------------------------------------------------------------------------------
int RimGeoMechFaultReactivationResult::getPartIndexFromPoint( const RigFemPartCollection* const partCollection, const cvf::Vec3d& point ) const
{
int idx = 0;
const int idx = 0;
if ( !partCollection ) return idx;
// Find candidates for intersected global elements
const cvf::BoundingBox intersectingBb( point, point );
std::vector<size_t> intersectedGlobalElementIndices;
partCollection->findIntersectingGlobalElementIndices( intersectingBb, &intersectedGlobalElementIndices );
std::vector<size_t> intersectedGlobalElementIndexCandidates;
partCollection->findIntersectingGlobalElementIndices( intersectingBb, &intersectedGlobalElementIndexCandidates );
if ( intersectedGlobalElementIndices.empty() ) return idx;
if ( intersectedGlobalElementIndexCandidates.empty() ) return idx;
// Utilize first intersected element to detect part for point
const auto [partId, elementIndex] = partCollection->partIdAndElementIndex( intersectedGlobalElementIndices.front() );
idx = partId;
// Iterate through global element candidates and check if point is in hexCorners
for ( const auto& globalElementIndex : intersectedGlobalElementIndexCandidates )
{
const auto [part, elementIndex] = partCollection->partAndElementIndex( globalElementIndex );
// Find nodes from element
std::array<cvf::Vec3d, 8> coordinates;
const bool isSuccess = part->fillElementCoordinates( elementIndex, coordinates );
if ( !isSuccess ) continue;
const bool isPointInCell = RigHexIntersectionTools::isPointInCell( point, coordinates.data() );
if ( isPointInCell ) return part->elementPartId();
}
// Utilize first part to have an id
return idx;
}

View File

@ -77,4 +77,6 @@ private:
caf::PdmField<int> m_faceAWellPathPartIndex;
caf::PdmField<int> m_faceBWellPathPartIndex;
const double m_defaultDistanceFromIntersection = 1.0; // [m] Default value from intersection and into each part
};

View File

@ -345,41 +345,57 @@ cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData(
return reSampledData;
}
void RigWellLogCurveData::interpolateSegment( RiaDefines::DepthTypeEnum resamplingDepthType,
double depthValue,
size_t firstIndex,
std::vector<double>& xValues,
std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& resampledDepths,
const double eps ) const
//--------------------------------------------------------------------------------------------------
/// The function creates and adds interpolated values for property and depths. The interpolated
/// values are added to the end of the resampledValues. Target depth is added to the end of the
/// resampledDepths vector for the resampling type. The depth values for remaining depth types
/// are created by linear interpolation between first and second depth value of the resampling type.
//--------------------------------------------------------------------------------------------------
void RigWellLogCurveData::createAndAddInterpolatedSegmentValueAndDepths(
std::vector<double>& resampledValues,
std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& resampledDepths,
RiaDefines::DepthTypeEnum resamplingDepthType,
double targetDepthValue,
size_t firstIndex,
size_t secondIndex,
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& originalDepths,
const std::vector<double>& propertyValues,
double eps )
{
auto depthIt = m_depths.find( resamplingDepthType );
if ( !originalDepths.contains( resamplingDepthType ) ) return;
size_t secondIndex = firstIndex + 1;
const auto& depthValues = originalDepths.find( resamplingDepthType )->second;
if ( firstIndex >= depthValues.size() || secondIndex >= depthValues.size() ) return;
double depth0 = depthIt->second[firstIndex];
double depth1 = depthIt->second[secondIndex];
double x0 = m_propertyValues[firstIndex];
double x1 = m_propertyValues[secondIndex];
double depth0 = depthValues[firstIndex];
double depth1 = depthValues[secondIndex];
double x0 = propertyValues[firstIndex];
double x1 = propertyValues[secondIndex];
double slope = 0.0;
if ( std::fabs( depth1 - depth0 ) > eps )
{
slope = ( x1 - x0 ) / ( depth1 - depth0 );
}
double xValue = slope * ( depthValue - depth0 ) + x0;
xValues.push_back( xValue );
double resampledValue = slope * ( targetDepthValue - depth0 ) + x0;
resampledValues.push_back( resampledValue );
resampledDepths[resamplingDepthType].push_back( targetDepthValue );
for ( auto depthTypeValuesPair : m_depths )
// Add depth values for remaining depth types
for ( const auto& [depthType, depthTypeValues] : originalDepths )
{
if ( depthTypeValuesPair.first != resamplingDepthType )
{
double otherDepth0 = depthTypeValuesPair.second[0];
double otherDepth1 = depthTypeValuesPair.second[1];
double otherSlope = ( otherDepth1 - otherDepth0 ) / ( depth1 - depth0 );
resampledDepths[depthTypeValuesPair.first].push_back( otherSlope * ( depthValue - depth0 ) + otherDepth0 );
}
if ( depthType == resamplingDepthType ) continue;
if ( firstIndex >= depthTypeValues.size() || secondIndex >= depthTypeValues.size() ) continue;
double otherDepth0 = depthTypeValues[firstIndex];
double otherDepth1 = depthTypeValues[secondIndex];
double otherSlope = ( otherDepth1 - otherDepth0 ) / ( depth1 - depth0 );
resampledDepths[depthType].push_back( otherSlope * ( targetDepthValue - depth0 ) + otherDepth0 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool isLeftOf( double x1, double x2, bool reverseOrder, double eps )
{
if ( reverseOrder )
@ -389,6 +405,9 @@ bool isLeftOf( double x1, double x2, bool reverseOrder, double eps )
return x2 - x1 > eps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool isRightOf( double x1, double x2, bool reverseOrder, double eps )
{
return isLeftOf( x2, x1, reverseOrder, eps );
@ -397,53 +416,59 @@ bool isRightOf( double x1, double x2, bool reverseOrder, double eps )
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData( RiaDefines::DepthTypeEnum resamplingDepthType,
const std::vector<double>& depths ) const
std::pair<std::vector<double>, std::map<RiaDefines::DepthTypeEnum, std::vector<double>>>
RigWellLogCurveData::createResampledValuesAndDepths( RiaDefines::DepthTypeEnum resamplingDepthType,
const std::vector<double>& targetDepths,
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& originalDepths,
const std::vector<double>& propertyValues )
{
const double eps = 1.0e-8;
std::vector<double> xValues;
std::map<RiaDefines::DepthTypeEnum, std::vector<double>> resampledDepths;
resampledDepths.insert( std::make_pair( resamplingDepthType, depths ) );
auto depthIt = m_depths.find( resamplingDepthType );
cvf::ref<RigWellLogCurveData> reSampledData = new RigWellLogCurveData;
if ( depthIt == m_depths.end() || depthIt->second.empty() ) return reSampledData;
auto depthIt = originalDepths.find( resamplingDepthType );
if ( depthIt == originalDepths.end() || depthIt->second.empty() ) return {};
const auto& depthValues = depthIt->second;
bool reverseOrder = resamplingDepthType == RiaDefines::DepthTypeEnum::CONNECTION_NUMBER;
std::vector<double> resampledValues;
std::map<RiaDefines::DepthTypeEnum, std::vector<double>> resampledDepths;
size_t segmentSearchStartIdx = 0;
for ( auto depth : depths )
for ( const auto& targetDepth : targetDepths )
{
bool foundPoint = false;
for ( size_t segmentStartIdx = segmentSearchStartIdx; segmentStartIdx < depthIt->second.size(); ++segmentStartIdx )
for ( size_t segmentStartIdx = segmentSearchStartIdx; segmentStartIdx < depthValues.size(); ++segmentStartIdx )
{
if ( std::fabs( depthIt->second[segmentStartIdx] - depth ) < eps ) // already have this depth point,
// reuse it
if ( std::fabs( depthValues[segmentStartIdx] - targetDepth ) < eps ) // already have this depth point, reuse it
{
xValues.push_back( m_propertyValues[segmentStartIdx] );
// Copy all depth types for this segment
for ( auto depthTypeValuesPair : m_depths )
// Copy all depth data for this segment
resampledValues.push_back( propertyValues[segmentStartIdx] );
for ( const auto& [depthType, depthValues] : originalDepths )
{
if ( depthTypeValuesPair.first != resamplingDepthType )
{
resampledDepths[depthTypeValuesPair.first].push_back( depthTypeValuesPair.second[segmentStartIdx] );
}
resampledDepths[depthType].push_back( depthValues[segmentStartIdx] );
}
segmentSearchStartIdx = segmentStartIdx + 1;
foundPoint = true;
break;
}
else if ( segmentStartIdx < depthIt->second.size() - 1 )
else if ( segmentStartIdx > 0 && segmentStartIdx < depthValues.size() )
{
double minDepthSegment = std::min( depthIt->second[segmentStartIdx], depthIt->second[segmentStartIdx + 1] );
double maxDepthSegment = std::max( depthIt->second[segmentStartIdx], depthIt->second[segmentStartIdx + 1] );
if ( cvf::Math::valueInRange( depth, minDepthSegment, maxDepthSegment ) )
// Interpolate between current and previous depth point
const size_t firstIndex = segmentStartIdx - 1;
const size_t secondIndex = segmentStartIdx;
double minDepthSegment = std::min( depthValues[firstIndex], depthValues[secondIndex] );
double maxDepthSegment = std::max( depthValues[firstIndex], depthValues[secondIndex] );
if ( cvf::Math::valueInRange( targetDepth, minDepthSegment, maxDepthSegment ) )
{
interpolateSegment( resamplingDepthType, depth, segmentStartIdx, xValues, resampledDepths, eps );
createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
targetDepth,
firstIndex,
secondIndex,
originalDepths,
propertyValues,
eps );
segmentSearchStartIdx = segmentStartIdx;
foundPoint = true;
break;
@ -452,17 +477,36 @@ cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData(
}
if ( !foundPoint )
{
if ( isLeftOf( depth, depthIt->second.front(), reverseOrder, eps ) )
if ( isLeftOf( targetDepth, depthValues.front(), reverseOrder, eps ) )
{
// Extrapolate from front two
interpolateSegment( resamplingDepthType, depth, 0, xValues, resampledDepths, eps );
const size_t firstIndex = 0;
const size_t secondIndex = 1;
createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
targetDepth,
firstIndex,
secondIndex,
originalDepths,
propertyValues,
eps );
foundPoint = true;
}
else if ( isRightOf( depth, depthIt->second.back(), reverseOrder, eps ) )
else if ( isRightOf( targetDepth, depthValues.back(), reverseOrder, eps ) )
{
// Extrapolate from end two
const size_t N = depthIt->second.size() - 1;
interpolateSegment( resamplingDepthType, depth, N - 1, xValues, resampledDepths, eps );
const size_t N = depthValues.size() - 1;
const size_t N_1 = N - 1;
createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
targetDepth,
N_1,
N,
originalDepths,
propertyValues,
eps );
foundPoint = true;
}
}
@ -470,6 +514,18 @@ cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData(
CAF_ASSERT( foundPoint );
}
return std::make_pair( resampledValues, resampledDepths );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigWellLogCurveData> RigWellLogCurveData::calculateResampledCurveData( RiaDefines::DepthTypeEnum resamplingDepthType,
const std::vector<double>& depths ) const
{
const auto [xValues, resampledDepths] = createResampledValuesAndDepths( resamplingDepthType, depths, m_depths, m_propertyValues );
cvf::ref<RigWellLogCurveData> reSampledData = new RigWellLogCurveData;
reSampledData->setValuesAndDepths( xValues, resampledDepths, m_rkbDiff, m_depthUnit, true, m_useLogarithmicScale );
return reSampledData;
}

View File

@ -82,12 +82,24 @@ public:
cvf::ref<RigWellLogCurveData> calculateResampledCurveData( double newMeasuredDepthStepSize ) const;
cvf::ref<RigWellLogCurveData> calculateResampledCurveData( RiaDefines::DepthTypeEnum resamplingDepthType,
const std::vector<double>& depths ) const;
void interpolateSegment( RiaDefines::DepthTypeEnum resamplingDepthType,
double depthValue,
size_t firstIndex,
std::vector<double>& xValues,
std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& resampledDepths,
const double eps ) const;
// Made static due to unit testing
static void createAndAddInterpolatedSegmentValueAndDepths( std::vector<double>& resampledValues,
std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& resampledDepths,
RiaDefines::DepthTypeEnum resamplingDepthType,
double targetDepthValue,
size_t firstIndex,
size_t secondIndex,
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& originalDepths,
const std::vector<double>& propertyValues,
double eps );
// Made static due to unit testing
static std::pair<std::vector<double>, std::map<RiaDefines::DepthTypeEnum, std::vector<double>>>
createResampledValuesAndDepths( RiaDefines::DepthTypeEnum resamplingDepthType,
const std::vector<double>& targetDepths,
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& originalDepths,
const std::vector<double>& propertyValues );
private:
void calculateIntervalsOfContinousValidValues();

View File

@ -93,6 +93,8 @@ set(SOURCE_GROUP_SOURCE_FILES
${CMAKE_CURRENT_LIST_DIR}/RigDeclineCurveCalculator-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RifReaderFmuRft-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RimSummaryRegressionAnalysisCurve-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RimWellLogCalculatedCurve-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RigWellLogCurveData-Test.cpp
)
if(RESINSIGHT_ENABLE_GRPC)

View File

@ -0,0 +1,197 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "gtest/gtest.h"
#include "RiaDefines.h"
#include "RigWellLogCurveData.h"
#include "cvfVector3.h"
#include <vector>
#include <iostream>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RigWellLogCurveData, createAndAddInterpolatedSegmentValueAndDepths_first )
{
// Input data
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>> originalDepths =
{ { RiaDefines::DepthTypeEnum::MEASURED_DEPTH, { 0.0, 20.0, 40.0 } },
{ RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH, { 0.0, 30.0, 60.0 } },
{ RiaDefines::DepthTypeEnum::PSEUDO_LENGTH, { 0.0, 40.0, 80.0 } } };
const std::vector<double> propertyValues = { 0.0, 100.0, 150.0 };
const double eps = 1e-6;
// Output data
const auto resamplingDepthType = RiaDefines::DepthTypeEnum::MEASURED_DEPTH;
std::vector<double> resampledValues;
std::map<RiaDefines::DepthTypeEnum, std::vector<double>> resampledDepths;
// Target data (resampling with MEASURED_DEPTH)
const double targetDepthValue = 10.0; // Halfway between index 0 and 1 for MEASURED_DEPTH in originalDepths
const size_t firstIndex = 0;
const size_t secondIndex = firstIndex + 1;
// Call the function under test
RigWellLogCurveData::createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
targetDepthValue,
firstIndex,
secondIndex,
originalDepths,
propertyValues,
eps );
// Check the results
ASSERT_EQ( resampledValues.size(), size_t( 1 ) );
ASSERT_DOUBLE_EQ( resampledValues[0], 50.0 );
ASSERT_EQ( resampledDepths.size(), size_t( 3 ) );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH].size(), size_t( 1 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][0], 10.0 );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH].size(), size_t( 1 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][0], 15.0 );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH].size(), size_t( 1 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][0], 20.0 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RigWellLogCurveData, createAndAddInterpolatedSegmentValueAndDepths_second )
{
// Input data
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>> originalDepths =
{ { RiaDefines::DepthTypeEnum::MEASURED_DEPTH, { 0.0, 20.0, 40.0 } },
{ RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH, { 0.0, 30.0, 60.0 } },
{ RiaDefines::DepthTypeEnum::PSEUDO_LENGTH, { 0.0, 40.0, 80.0 } } };
const std::vector<double> propertyValues = { 0.0, 100.0, 150.0 };
const double eps = 1e-6;
// Output data
const auto resamplingDepthType = RiaDefines::DepthTypeEnum::MEASURED_DEPTH;
std::vector<double> resampledValues;
std::map<RiaDefines::DepthTypeEnum, std::vector<double>> resampledDepths;
// Target data (resampling with MEASURED_DEPTH)
const double firstTargetDepthValue = 10.0; // Halfway between first and second index for MEASURED_DEPTH in originalDepths
const double secondTargetDepthValue = 30.0; // Halfway between second and third index for MEASURED_DEPTH in originalDepths
const size_t firstIndex = 0;
const size_t secondIndex = 1;
const size_t thirdIndex = 2;
// Call the function under test with interpolating between first and second index
RigWellLogCurveData::createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
firstTargetDepthValue,
firstIndex,
secondIndex,
originalDepths,
propertyValues,
eps );
// Call the function under test with interpolating between second and third index
RigWellLogCurveData::createAndAddInterpolatedSegmentValueAndDepths( resampledValues,
resampledDepths,
resamplingDepthType,
secondTargetDepthValue,
secondIndex,
thirdIndex,
originalDepths,
propertyValues,
eps );
// Check the results
ASSERT_EQ( resampledValues.size(), size_t( 2 ) );
ASSERT_DOUBLE_EQ( resampledValues[0], 50.0 );
ASSERT_DOUBLE_EQ( resampledValues[1], 125.0 );
ASSERT_EQ( resampledDepths.size(), size_t( 3 ) );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH].size(), size_t( 2 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][0], 10.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][1], 30.0 );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH].size(), size_t( 2 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][0], 15.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][1], 45.0 );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH].size(), size_t( 2 ) );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][0], 20.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][1], 60.0 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RigWellLogCurveData, CreateResampledValuesAndDepthsTest )
{
// Input data
RiaDefines::DepthTypeEnum resamplingDepthType = RiaDefines::DepthTypeEnum::MEASURED_DEPTH;
const std::vector<double> targetDepths = { 0.0, 5.0, 10.0, 15.0 };
const std::map<RiaDefines::DepthTypeEnum, std::vector<double>> originalDepths =
{ { RiaDefines::DepthTypeEnum::MEASURED_DEPTH, { 0.0, 10.0, 20.0 } },
{ RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH, { 0.0, 20.0, 40.0 } },
{ RiaDefines::DepthTypeEnum::PSEUDO_LENGTH, { 0.0, 30.0, 60.0 } } };
const std::vector<double> propertyValues = { 0.0, 100.0, 200.0 };
// Call the function under test
auto result = RigWellLogCurveData::createResampledValuesAndDepths( resamplingDepthType, targetDepths, originalDepths, propertyValues );
// Check the results
std::vector<double>& resampledPropertyValues = result.first;
std::map<RiaDefines::DepthTypeEnum, std::vector<double>>& resampledDepths = result.second;
const auto expectedSize = targetDepths.size();
ASSERT_EQ( resampledDepths.size(), originalDepths.size() );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH].size(), expectedSize );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH].size(), expectedSize );
ASSERT_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH].size(), expectedSize );
ASSERT_EQ( resampledPropertyValues.size(), expectedSize );
// Example assertions for the specific values
ASSERT_DOUBLE_EQ( resampledPropertyValues[0], 0.0 );
ASSERT_DOUBLE_EQ( resampledPropertyValues[1], 50.0 );
ASSERT_DOUBLE_EQ( resampledPropertyValues[2], 100.0 );
ASSERT_DOUBLE_EQ( resampledPropertyValues[3], 150.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][0], 0.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][1], 5.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][2], 10.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::MEASURED_DEPTH][3], 15.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][0], 0.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][1], 10.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][2], 20.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH][3], 30.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][0], 0.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][1], 15.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][2], 30.0 );
ASSERT_DOUBLE_EQ( resampledDepths[RiaDefines::DepthTypeEnum::PSEUDO_LENGTH][3], 45.0 );
}