mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-25 18:55:39 -06:00
Moved the statistical calculation algorithm code into a separate file.
Added unit test to these calculations, and fixed a calculation error. p4#: 21140
This commit is contained in:
192
ApplicationCode/ReservoirDataModel/RigStatisticsMath.cpp
Normal file
192
ApplicationCode/ReservoirDataModel/RigStatisticsMath.cpp
Normal file
@@ -0,0 +1,192 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "RigStatisticsMath.h"
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// A function to do basic statistical calculations
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
void RigStatisticsMath::calculateBasicStatistics(const std::vector<double>& values, double* min, double* max, double* range, double* mean, double* dev)
|
||||
{
|
||||
double m_min(HUGE_VAL);
|
||||
double m_max(-HUGE_VAL);
|
||||
double m_mean(HUGE_VAL);
|
||||
double m_dev(HUGE_VAL);
|
||||
|
||||
double sum = 0.0;
|
||||
double sumSquared = 0.0;
|
||||
|
||||
size_t validValueCount = 0;
|
||||
|
||||
for (size_t i = 0; i < values.size(); i++)
|
||||
{
|
||||
double val = values[i];
|
||||
if (val == HUGE_VAL) continue;
|
||||
|
||||
validValueCount++;
|
||||
|
||||
if (val < m_min) m_min = val;
|
||||
if (val > m_max) m_max = val;
|
||||
|
||||
sum += val;
|
||||
sumSquared += (val * val);
|
||||
}
|
||||
|
||||
if (validValueCount > 0)
|
||||
{
|
||||
m_mean = sum / validValueCount;
|
||||
|
||||
|
||||
// http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
|
||||
// Running standard deviation
|
||||
|
||||
double s0 = static_cast<double>(validValueCount);
|
||||
double s1 = sum;
|
||||
double s2 = sumSquared;
|
||||
|
||||
m_dev = sqrt( (s0 * s2) - (s1 * s1) ) / s0;
|
||||
}
|
||||
|
||||
if (min) *min = m_min;
|
||||
if (max) *max = m_max;
|
||||
if (range) *range = m_max - m_min;
|
||||
|
||||
if (mean) *mean = m_mean;
|
||||
if (dev) *dev = m_dev;
|
||||
}
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// Calculate the percentiles of /a inputValues at the pValPosition percentages using the "Nearest Rank"
|
||||
/// method. This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
|
||||
/// the inputValues does not contain any valid values
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions)
|
||||
{
|
||||
std::vector<double> sortedValues;
|
||||
sortedValues.reserve(inputValues.size());
|
||||
|
||||
for (size_t i = 0; i < inputValues.size(); ++i)
|
||||
{
|
||||
if (inputValues[i] != HUGE_VAL)
|
||||
{
|
||||
sortedValues.push_back(inputValues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(sortedValues.begin(), sortedValues.end());
|
||||
|
||||
std::vector<double> percentiles(pValPositions.size(), HUGE_VAL);
|
||||
if (sortedValues.size())
|
||||
{
|
||||
for (size_t i = 0; i < pValPositions.size(); ++i)
|
||||
{
|
||||
double pVal = HUGE_VAL;
|
||||
|
||||
size_t pValIndex = static_cast<size_t>(sortedValues.size() * abs(pValPositions[i]) / 100);
|
||||
|
||||
if (pValIndex >= sortedValues.size() ) pValIndex = sortedValues.size() - 1;
|
||||
|
||||
pVal = sortedValues[pValIndex];
|
||||
percentiles[i] = pVal;
|
||||
}
|
||||
}
|
||||
|
||||
return percentiles;
|
||||
};
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
RigHistogramCalculator::RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram)
|
||||
{
|
||||
assert(histogram);
|
||||
assert(nBins > 0);
|
||||
|
||||
if (max == min) { nBins = 1; } // Avoid dividing on 0 range
|
||||
|
||||
m_histogram = histogram;
|
||||
m_min = min;
|
||||
m_observationCount = 0;
|
||||
|
||||
// Initialize bins
|
||||
m_histogram->resize(nBins);
|
||||
for (size_t i = 0; i < m_histogram->size(); ++i) (*m_histogram)[i] = 0;
|
||||
|
||||
m_range = max - min;
|
||||
maxIndex = nBins-1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigHistogramCalculator::addData(const std::vector<double>& data)
|
||||
{
|
||||
assert(m_histogram);
|
||||
for (size_t i = 0; i < data.size(); ++i)
|
||||
{
|
||||
if (data[i] == HUGE_VAL)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t index = 0;
|
||||
|
||||
if (maxIndex > 0) index = (size_t)(maxIndex*(data[i] - m_min)/m_range);
|
||||
|
||||
if(index < m_histogram->size()) // Just clip to the max min range (-index will overflow to positive )
|
||||
{
|
||||
(*m_histogram)[index]++;
|
||||
m_observationCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
double RigHistogramCalculator::calculatePercentil(double pVal)
|
||||
{
|
||||
assert(m_histogram);
|
||||
assert(m_histogram->size());
|
||||
assert( 0.0 <= pVal && pVal <= 1.0);
|
||||
|
||||
double pValObservationCount = pVal*m_observationCount;
|
||||
if (pValObservationCount == 0.0) return m_min;
|
||||
|
||||
size_t accObsCount = 0;
|
||||
double binWidth = m_range/m_histogram->size();
|
||||
for (size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx)
|
||||
{
|
||||
size_t binObsCount = (*m_histogram)[binIdx];
|
||||
|
||||
accObsCount += binObsCount;
|
||||
if (accObsCount >= pValObservationCount)
|
||||
{
|
||||
double domainValueAtEndOfBin = m_min + (binIdx+1) * binWidth;
|
||||
double unusedFractionOfLastBin = (double)(accObsCount - pValObservationCount)/binObsCount;
|
||||
return domainValueAtEndOfBin - unusedFractionOfLastBin*binWidth;
|
||||
}
|
||||
}
|
||||
assert(false);
|
||||
return HUGE_VAL;
|
||||
}
|
||||
Reference in New Issue
Block a user