Added well branch number and segment number to result info view

p4#: 21968
This commit is contained in:
Magne Sjaastad 2013-06-21 16:20:11 +02:00
parent cd6d60d896
commit 12a0040473
6 changed files with 439 additions and 283 deletions

View File

@ -707,6 +707,38 @@ bool RifReaderEclipseOutput::dynamicResult(const QString& result, PorosityModelR
return true;
}
// Helper structure to handle the metadata for connections in segments
struct SegmentData
{
SegmentData(const well_conn_collection_type* connections) :
m_branchId(-1),
m_segmentId(-1),
m_gridIndex(cvf::UNDEFINED_SIZE_T),
m_connections(connections)
{}
int m_branchId;
int m_segmentId;
size_t m_gridIndex;
const well_conn_collection_type* m_connections;
};
void getSegmentDataByBranchId(const std::list<SegmentData>& segments, std::vector<SegmentData>& branchSegments, int branchId)
{
std::list<SegmentData>::const_iterator it;
for (it = segments.begin(); it != segments.end(); it++)
{
if (it->m_branchId == branchId)
{
branchSegments.push_back(*it);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -823,6 +855,10 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
wellResFrame.m_wellHead.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI, cellJ, cellK);
wellResFrame.m_wellHead.m_gridIndex = gridNr;
}
else
{
CVF_ASSERT(0);
}
std::string gridName;
@ -836,125 +872,106 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
gridName = rigGrid->gridName();
}
std::list<SegmentData> segmentList;
std::vector<const well_segment_type*> outletBranchSegmentList; // Keep a list of branch outlet segments to avoid traversal twice
int branchCount = 0;
if (well_state_is_MSW(ert_well_state))
{
well_branch_collection_type* branches = well_state_get_branches(ert_well_state);
wellResFrame.m_wellResultBranches.resize(well_branch_collection_get_size(branches));
wellResults->setMultiSegmentWell(true);
well_branch_collection_type* branches = well_state_get_branches(ert_well_state);
branchCount = well_branch_collection_get_size(branches);
for (int branchIdx = 0; branchIdx < well_branch_collection_get_size(branches); branchIdx++)
{
RigWellResultBranch& rigWellResultBranch = wellResFrame.m_wellResultBranches[branchIdx];
rigWellResultBranch.m_branchIndex = branchIdx;
wellResults->setMultiSegmentWell(true);
const well_segment_type* branchBottomSegment = well_branch_collection_iget_start_segment(branches, branchIdx);
CVF_ASSERT(branchBottomSegment);
const well_segment_type* segment = well_branch_collection_iget_start_segment(branches, branchIdx);
int branchId = well_segment_get_branch_id(segment);
std::vector<const well_segment_type*> ertBranchSegments; // Segment closest to well head first in this vector
rigWellResultBranch.m_ertBranchId = well_segment_get_branch_id(branchBottomSegment);
// Find outlet segment in next branch
// Start from bottom, and iterate over segments until next branch is detected
int outletErtBranchId = rigWellResultBranch.m_ertBranchId;
const well_segment_type* outletSegmentInNextBranch = branchBottomSegment;
while (outletSegmentInNextBranch && outletErtBranchId == rigWellResultBranch.m_ertBranchId)
while (segment && branchId == well_segment_get_branch_id(segment))
{
// Insert at front, as we want the segments to be ordered starting closest to the well head
ertBranchSegments.insert(ertBranchSegments.begin(), outletSegmentInNextBranch);
outletSegmentInNextBranch = well_segment_get_outlet(outletSegmentInNextBranch);
if (outletSegmentInNextBranch)
SegmentData segmentData(NULL);
segmentData.m_branchId = branchId;
segmentData.m_segmentId = well_segment_get_id(segment);
segmentData.m_gridIndex = gridNr;
if (well_segment_has_grid_connections(segment, gridName.data()))
{
outletErtBranchId = well_segment_get_branch_id(outletSegmentInNextBranch);
const well_conn_collection_type* connections = well_segment_get_connections(segment, gridName.data());
segmentData.m_connections = connections;
}
}
// Insert in front, as the segments are accessed starting from grid cell closes to well head
segmentList.push_front(segmentData);
if (outletSegmentInNextBranch)
{
rigWellResultBranch.m_connectionDepthOnOutletBranch = well_segment_get_depth(outletSegmentInNextBranch);
// No connections present in segment this branch is connected to
// Store intersection data used for visualization in RivWellPipesPartMgr
rigWellResultBranch.m_outletErtBranchId = outletErtBranchId;
}
// Get first segment with connections in order to find grid cell index to connect the branch to
while(outletSegmentInNextBranch && !well_segment_has_grid_connections(outletSegmentInNextBranch, gridName.data()))
{
outletSegmentInNextBranch = well_segment_get_outlet(outletSegmentInNextBranch);
// There are no connections in the directly connected outlet segment.
rigWellResultBranch.m_useBranchHeadAsCenterLineIntersectionTop = true;
}
if (outletSegmentInNextBranch)
{
const well_conn_collection_type* connections = well_segment_get_connections(outletSegmentInNextBranch, gridName.data());
CVF_ASSERT(connections);
size_t existingConnCount = rigWellResultBranch.m_wellCells.size();
int connectionCount = well_conn_collection_get_size(connections);
CVF_ASSERT(connectionCount > 0);
// Get last connection from the outlet segment
well_conn_type* ert_connection = well_conn_collection_iget(connections, connectionCount - 1);
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
// If a well is defined in fracture region, the K-value is from (cellCountK - 1) -> cellCountK*2 - 1
// Adjust K so index is always in valid grid region
if (cellK >= static_cast<int>(grids[gridNr]->cellCountK()))
if (well_segment_get_outlet_id(segment) == -1)
{
cellK -= static_cast<int>(grids[gridNr]->cellCountK());
break;
}
rigWellResultBranch.m_branchHead.m_gridIndex = gridNr;
rigWellResultBranch.m_branchHead.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI , cellJ , cellK);
rigWellResultBranch.m_branchHead.m_isOpen = well_conn_open(ert_connection);
CVF_ASSERT(rigWellResultBranch.m_branchHead.m_gridCellIndex != cvf::UNDEFINED_SIZE_T);
segment = well_segment_get_outlet(segment);
}
outletBranchSegmentList.push_back(segment);
}
}
else
{
branchCount = 1;
const well_conn_collection_type* connections = well_state_get_grid_connections(ert_well_state, gridName.data());
SegmentData segmentData(connections);
segmentData.m_gridIndex = gridNr;
segmentList.push_front(segmentData);
}
size_t currentGridBranchStartIndex = wellResFrame.m_wellResultBranches.size();
wellResFrame.m_wellResultBranches.resize(currentGridBranchStartIndex + branchCount);
// Import all well result cells for all connections
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++)
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx];
wellResultBranch.m_branchIndex = branchIdx;
wellResultBranch.m_ertBranchId = branchIdx;
std::vector<SegmentData> branchSegments;
getSegmentDataByBranchId(segmentList, branchSegments, branchIdx);
for (size_t segmentIdx = 0; segmentIdx < branchSegments.size(); segmentIdx++)
{
SegmentData& connData = branchSegments[segmentIdx];
if (!connData.m_connections)
{
size_t existingCellCount = wellResultBranch.m_wellCells.size();
wellResultBranch.m_wellCells.resize(existingCellCount + 1);
RigWellResultCell& data = wellResultBranch.m_wellCells[existingCellCount];
data.m_ertBranchId = connData.m_branchId;
data.m_ertSegmentId = connData.m_segmentId;
}
else
{
// Use well head as branch head
rigWellResultBranch.m_branchHead = wellResFrame.m_wellHead;
CVF_ASSERT(rigWellResultBranch.m_branchHead.m_gridCellIndex != cvf::UNDEFINED_SIZE_T);
int connectionCount = well_conn_collection_get_size(connData.m_connections);
// TODO: Possibly add branch ID for the main branch the well head is a part of
}
CVF_ASSERT(rigWellResultBranch.m_branchHead.m_gridCellIndex != cvf::UNDEFINED_SIZE_T);
for (size_t i = 0; i < ertBranchSegments.size(); i++)
{
outletSegmentInNextBranch = ertBranchSegments[i];
const well_conn_collection_type* connections = well_segment_get_connections(outletSegmentInNextBranch , gridName.data());
if (!connections) continue;
size_t existingConnCount = rigWellResultBranch.m_wellCells.size();
int connectionCount = well_conn_collection_get_size(connections);
if (connectionCount > 0)
{
rigWellResultBranch.m_wellCells.resize(existingConnCount + connectionCount);
}
size_t existingCellCount = wellResultBranch.m_wellCells.size();
wellResultBranch.m_wellCells.resize(existingCellCount + connectionCount);
for (int connIdx = 0; connIdx < connectionCount; connIdx++)
{
well_conn_type* ert_connection = well_conn_collection_iget(connections, connIdx);
well_conn_type* ert_connection = well_conn_collection_iget(connData.m_connections, connIdx);
CVF_ASSERT(ert_connection);
RigWellResultCell& data = rigWellResultBranch.m_wellCells[existingConnCount + connIdx];
RigWellResultCell& data = wellResultBranch.m_wellCells[existingCellCount + connIdx];
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
bool open = well_conn_open( ert_connection );
int segmentId = well_conn_get_segment( ert_connection );
bool isCellOpen = well_conn_open( ert_connection );
// If a well is defined in fracture region, the K-value is from (cellCountK - 1) -> cellCountK*2 - 1
// Adjust K so index is always in valid grid region
@ -964,57 +981,148 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
}
data.m_gridIndex = gridNr;
data.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI , cellJ , cellK);
data.m_isOpen = open;
data.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI, cellJ, cellK);
data.m_isOpen = isCellOpen;
data.m_ertBranchId = connData.m_branchId;
data.m_ertSegmentId = connData.m_segmentId;
}
}
}
}
else
if (well_state_is_MSW(ert_well_state))
{
const well_conn_collection_type* connections = well_state_get_grid_connections(ert_well_state, gridName.data());
if (connections)
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++)
{
size_t branchIdx = wellResFrame.m_wellResultBranches.size();
wellResFrame.m_wellResultBranches.resize(branchIdx + 1);
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx];
RigWellResultBranch& wellSegment = wellResFrame.m_wellResultBranches[branchIdx];
wellSegment.m_branchIndex = branchIdx;
int connectionCount = well_conn_collection_get_size(connections);
size_t existingConnCount = wellSegment.m_wellCells.size();
wellSegment.m_wellCells.resize(existingConnCount + connectionCount);
for (int connIdx = 0; connIdx < connectionCount; connIdx++)
const well_segment_type* outletBranchSegment = outletBranchSegmentList[branchIdx];
if (outletBranchSegment)
{
well_conn_type* ert_connection = well_conn_collection_iget(connections, connIdx);
int outletErtBranchId = well_segment_get_branch_id(outletBranchSegment);
RigWellResultBranch& outletResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + outletErtBranchId];
RigWellResultCell& data = wellSegment.m_wellCells[existingConnCount + connIdx];
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
bool isCellOpen = well_conn_open( ert_connection );
// TODO: Are these available for this type of well?
int segmentId = well_conn_get_segment( ert_connection );
// If a well is defined in fracture region, the K-value is from (cellCountK - 1) -> cellCountK*2 - 1
// Adjust K so index is always in valid grid region
if (cellK >= static_cast<int>(grids[gridNr]->cellCountK()))
int outletErtSegmentId = well_segment_get_branch_id(outletBranchSegment);
size_t lastCellIndexForSegmentId = cvf::UNDEFINED_SIZE_T;
for (size_t outletCellIdx = 0; outletCellIdx < outletResultBranch.m_wellCells.size(); outletCellIdx++)
{
cellK -= static_cast<int>(grids[gridNr]->cellCountK());
if (outletResultBranch.m_wellCells[outletCellIdx].m_ertSegmentId == outletErtSegmentId)
{
lastCellIndexForSegmentId = outletCellIdx;
}
}
data.m_gridIndex = gridNr;
data.m_gridCellIndex = grids[gridNr]->cellIndexFromIJK(cellI , cellJ , cellK);
CVF_ASSERT(lastCellIndexForSegmentId != cvf::UNDEFINED_SIZE_T);
data.m_isOpen = isCellOpen;
if (lastCellIndexForSegmentId != cvf::UNDEFINED_SIZE_T)
{
if (outletResultBranch.m_wellCells[lastCellIndexForSegmentId].hasGridConnections())
{
wellResultBranch.m_branchHead = outletResultBranch.m_wellCells[lastCellIndexForSegmentId];
}
else
{
// There are no connections on outlet branch segment
// Add center coordinate of first connected well cell
RigWellResultCell& outletCell = outletResultBranch.m_wellCells[lastCellIndexForSegmentId];
size_t firstCellWithGridConnection = cvf::UNDEFINED_SIZE_T;
for (size_t j = 0; j < wellResultBranch.m_wellCells.size(); j++)
{
if (wellResultBranch.m_wellCells[j].hasGridConnections())
{
firstCellWithGridConnection = j;
break;
}
}
if (firstCellWithGridConnection != cvf::UNDEFINED_SIZE_T)
{
const RigCell& cell = m_eclipseCase->cellFromWellResultCell(wellResultBranch.m_wellCells[firstCellWithGridConnection]);
cvf::Vec3d coordToAdd = cell.center();
size_t currentCellIndex = lastCellIndexForSegmentId;
RigWellResultCell& currCell = outletResultBranch.m_wellCells[currentCellIndex];
while (currentCellIndex != cvf::UNDEFINED_SIZE_T && !currCell.hasGridConnections())
{
size_t coordCount = currCell.m_connectedBranchCount;
if (coordCount == 0)
{
currCell.m_interpolatedCenter = coordToAdd;
}
else
{
cvf::Vec3d tmp = currCell.m_interpolatedCenter * coordCount / static_cast<double>(coordCount + 1);
cvf::Vec3d toBeAdded = coordToAdd / static_cast<double>(coordCount + 1);
currCell.m_interpolatedCenter = tmp + toBeAdded;
}
currCell.m_connectedBranchCount++;
if (currentCellIndex == 0)
{
currentCellIndex = cvf::UNDEFINED_SIZE_T;
// Find the branch the outlet is connected to, and continue update of
// segments until a segment with a grid connection is found
RigWellResultCell& branchHead = outletResultBranch.m_branchHead;
if (branchHead.m_ertBranchId == -1 || currCell.m_ertBranchId == branchHead.m_ertBranchId)
{
continue;
}
for (int outletBranchIdx = 0; outletBranchIdx < branchCount; outletBranchIdx++)
{
if (wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + outletBranchIdx].m_ertBranchId == branchHead.m_ertBranchId)
{
outletResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + outletBranchIdx];
for (int outletBranchCellIdx = 0; outletBranchCellIdx < outletResultBranch.m_wellCells.size(); outletBranchCellIdx++)
{
if (outletResultBranch.m_wellCells[outletBranchCellIdx].m_ertSegmentId == branchHead.m_ertSegmentId)
{
currentCellIndex = outletBranchCellIdx;
}
}
}
}
}
else
{
currentCellIndex--;
}
if(currentCellIndex >= 0 && currentCellIndex < outletResultBranch.m_wellCells.size())
{
currCell = outletResultBranch.m_wellCells[currentCellIndex];
}
}
}
wellResultBranch.m_branchHead = outletCell;
}
}
}
}
else
{
// No branch head is assigned, use well head as fall back
wellResultBranch.m_branchHead = wellResFrame.m_wellHead;
}
CVF_ASSERT(wellResultBranch.m_branchHead.hasConnections());
}
}
}
}
wellResults->computeMappingFromResultTimeIndicesToWellTimeIndices(m_timeSteps);
wells.push_back(wellResults.p());

View File

@ -171,6 +171,32 @@ bool isIdentical(const RigWellResultCell* a, const RigWellResultCell* b)
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultCell* findOutletWellResultCell(const RigWellResultCell& branchHead, const std::vector<RigWellResultBranch>& wellResultBranches, RigCaseData* rigCaseData)
{
CVF_ASSERT(rigCaseData);
for (size_t i = 0; i < wellResultBranches.size(); i++)
{
if (wellResultBranches[i].m_ertBranchId == branchHead.m_ertBranchId)
{
for (size_t cellIdx = 0; cellIdx < wellResultBranches[i].m_wellCells.size(); cellIdx++)
{
if (wellResultBranches[i].m_wellCells[cellIdx].m_ertSegmentId == branchHead.m_ertSegmentId)
{
return &(wellResultBranches[i].m_wellCells[cellIdx]);
}
}
}
}
return NULL;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -251,39 +277,59 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
if (resBranches[brIdx].m_wellCells.size() == 0)
continue; // Skip empty branches. Do not know why they exist, but they make problems.
prevResCell = NULL;
// Find the start the MSW well-branch centerline. Normal wells are started "once" at wellhead in the code above
if (wellResults->isMultiSegmentWell())
{
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
pipeBranchesCellIds.push_back(std::vector <RigWellResultCell>());
if (resBranches[brIdx].m_useBranchHeadAsCenterLineIntersectionTop)
if (brIdx == 0)
{
// Intersection evaluation is done when all center lines are computed,
// as the center lines are used to compute the intersections
// The first branch contains segment number 1, and this is the only segment connected to well head
// See Eclipse documentation for the keyword WELSEGS
prevResCell = whResCell;
// Insert well head if this is branch head, as we have all information we need
if (isIdentical(&resBranches[brIdx].m_branchHead, whResCell))
{
prevResCell = whResCell;
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevResCell);
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevResCell);
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevResCell);
}
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevResCell);
}
else
{
// Create a new branch and use branch head as previous result cell
if (resBranches[brIdx].m_branchHead.hasGridConnections())
{
// Create a new branch and use branch head as previous result cell
prevResCell = &(resBranches[brIdx].m_branchHead);
prevResCell = &(resBranches[brIdx].m_branchHead);
const RigCell& whCell = rigReservoir->cellFromWellResultCell(resBranches[brIdx].m_branchHead);
cvf::Vec3d branchHeadStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K);
const RigCell& cell = rigReservoir->cellFromWellResultCell(resBranches[brIdx].m_branchHead);
cvf::Vec3d branchHeadStartPos = cell.faceCenter(cvf::StructGridInterface::NEG_K);
pipeBranchesCLCoords.back().push_back(branchHeadStartPos);
pipeBranchesCellIds.back().push_back(*prevResCell);
pipeBranchesCLCoords.back().push_back(branchHeadStartPos);
pipeBranchesCellIds.back().push_back(*prevResCell);
}
else
{
// Find outlet well result cell
const RigWellResultCell* outletCell = findOutletWellResultCell(resBranches[brIdx].m_branchHead, resBranches, rigReservoir);
CVF_ASSERT(outletCell);
if (outletCell)
{
cvf::Vec3d interpolatedCoord = outletCell->m_interpolatedCenter;
CVF_ASSERT(interpolatedCoord != cvf::Vec3d::UNDEFINED);
if (interpolatedCoord != cvf::Vec3d::UNDEFINED)
{
pipeBranchesCLCoords.back().push_back(interpolatedCoord);
pipeBranchesCellIds.back().push_back(RigWellResultCell());
}
}
}
}
}
@ -296,55 +342,89 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
std::vector<RigWellResultCell>& branchCellIds = pipeBranchesCellIds.back();
const RigWellResultCell& resCell = resBranchCells[cIdx];
if (!resCell.hasConnections())
{
continue;
}
if (resCell.hasBranchConnections())
{
// Use the interpolated value of branch head
cvf::Vec3d interpolatedCoord = resCell.m_interpolatedCenter;
CVF_ASSERT(interpolatedCoord != cvf::Vec3d::UNDEFINED);
if (interpolatedCoord != cvf::Vec3d::UNDEFINED)
{
pipeBranchesCLCoords.back().push_back(interpolatedCoord);
pipeBranchesCellIds.back().push_back(RigWellResultCell());
}
// Set previous result cell to NULL
prevResCell = NULL;
continue;
}
const RigCell& cell = rigReservoir->cellFromWellResultCell(resCell);
// Check if this and the previous cells has shared faces
cvf::StructGridInterface::FaceType sharedFace;
if (resBranches[brIdx].m_useBranchHeadAsCenterLineIntersectionTop && cIdx == 0)
{
// Insert cell center of first cell
// Intersection point to connect to is inserted further down in this function
branchCLCoords.push_back(cell.center());
branchCellIds.push_back(resCell);
}
else if (rigReservoir->findSharedSourceFace(sharedFace, resCell, *prevResCell))
if (prevResCell && rigReservoir->findSharedSourceFace(sharedFace, resCell, *prevResCell))
{
branchCLCoords.push_back(cell.faceCenter(sharedFace));
branchCellIds.push_back(resCell);
}
else
{
// This and the previous cell does not share a face. We need to go out of the previous cell, before entering this.
const RigCell& prevCell = rigReservoir->cellFromWellResultCell(*prevResCell);
cvf::Vec3d centerPrevCell = prevCell.center();
cvf::Vec3d previousCoord;
if (prevResCell)
{
// This and the previous cell does not share a face. We need to go out of the previous cell, before entering this.
const RigCell& prevCell = rigReservoir->cellFromWellResultCell(*prevResCell);
previousCoord = prevCell.center();
}
else
{
previousCoord = pipeBranchesCLCoords.back().back();
}
cvf::Vec3d centerThisCell = cell.center();
// First make sure this cell is not starting a new "display" branch
if ( !isAutoDetectBranches
if ( wellResults->isMultiSegmentWell()
|| !isAutoDetectBranches
|| (prevResCell == whResCell)
|| (centerThisCell-centerPrevCell).lengthSquared() <= (centerThisCell - whStartPos).lengthSquared()
|| (centerThisCell-previousCoord).lengthSquared() <= (centerThisCell - whStartPos).lengthSquared()
)
{
// Not starting a "display" branch
// Create ray and intersect with cells
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin(centerPrevCell);
rayToThisCell.setDirection((centerThisCell - centerPrevCell).getNormalized());
rayToThisCell.setOrigin(previousCoord);
rayToThisCell.setDirection((centerThisCell - previousCoord).getNormalized());
cvf::Vec3d outOfPrevCell(centerPrevCell);
cvf::Vec3d intoThisCell(centerThisCell);
cell.firstIntersectionPoint(rayToThisCell, &intoThisCell);
bool intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
//CVF_ASSERT(intersectionOk);
intersectionOk = cell.firstIntersectionPoint(rayToThisCell, &intoThisCell);
//CVF_ASSERT(intersectionOk);
if ((intoThisCell - outOfPrevCell).lengthSquared() > 1e-3)
if (prevResCell)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(*prevResCell);
cvf::Vec3d outOfPrevCell(previousCoord);
const RigCell& prevCell = rigReservoir->cellFromWellResultCell(*prevResCell);
bool intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
//CVF_ASSERT(intersectionOk);
//CVF_ASSERT(intersectionOk);
if ((intoThisCell - outOfPrevCell).lengthSquared() > 1e-3)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(*prevResCell);
}
}
branchCLCoords.push_back(intoThisCell);
branchCellIds.push_back(resCell);
}
@ -356,7 +436,7 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
// thus we interpret it as a new branch.
// First finish the current branch
branchCLCoords.push_back(branchCLCoords.back() + 1.5*(centerPrevCell - branchCLCoords.back()) );
branchCLCoords.push_back(branchCLCoords.back() + 1.5*(previousCoord - branchCLCoords.back()) );
// Create new display branch
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
@ -380,7 +460,7 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
prevResCell = &resCell;
}
if (wellResults->isMultiSegmentWell())
if (prevResCell && wellResults->isMultiSegmentWell())
{
// All MSW branches are completed using the point 0.5 past the center of last cell
const RigCell& prevCell = rigReservoir->cellFromWellResultCell(*prevResCell);
@ -389,7 +469,7 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
}
}
if (!wellResults->isMultiSegmentWell())
if (prevResCell && !wellResults->isMultiSegmentWell())
{
// For the last cell, add the point 0.5 past the center of that cell
const RigCell& prevCell = rigReservoir->cellFromWellResultCell(*prevResCell);
@ -397,101 +477,6 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
pipeBranchesCLCoords.back().push_back(pipeBranchesCLCoords.back().back() + 1.5*(centerPrevCell - pipeBranchesCLCoords.back().back()) );
}
if (wellResults->isMultiSegmentWell())
{
// Compute intersection points for multi segment wells connected to segments of other branches
for (size_t brIdx = 0; brIdx < resBranches.size(); brIdx++)
{
const RigWellResultBranch& branchToConnect = resBranches[brIdx];
if (branchToConnect.m_useBranchHeadAsCenterLineIntersectionTop)
{
// Find intersection grid cell in branch to connect to
cvf::Vec3d intersectionPoint = cvf::Vec3d::UNDEFINED;
int outletErtBranchId = branchToConnect.m_outletErtBranchId;
for (size_t outletBranchIdx = 0; outletBranchIdx < resBranches.size(); outletBranchIdx++)
{
if (resBranches[outletBranchIdx].m_ertBranchId == outletErtBranchId)
{
RigWellResultCell outletResultCell = resBranches[outletBranchIdx].m_branchHead;
// Find generated pipe branch this cell resides in
for (size_t i = 0; i < pipeBranchesCellIds.size(); i++)
{
for (size_t j = 0; j < pipeBranchesCellIds[i].size(); j++)
{
const RigWellResultCell& candidate = pipeBranchesCellIds[i][j];
if (isIdentical(&candidate, &outletResultCell))
{
// Find the coordinate pair at the intersection between two cell IDs
while (j + 1 < pipeBranchesCellIds[i].size() && isIdentical(&pipeBranchesCellIds[i][j + 1], &outletResultCell))
{
j++;
}
if (j + 1 >= pipeBranchesCLCoords[i].size())
{
// Use the last point in the center line
intersectionPoint = pipeBranchesCLCoords[i][j];
}
else
{
cvf::Vec3d lineStart = pipeBranchesCLCoords[i][j];
cvf::Vec3d lineEnd = pipeBranchesCLCoords[i][j + 1];
cvf::Plane depthPlane;
depthPlane.setFromPointAndNormal(cvf::Vec3d(0.0, 0.0, -branchToConnect.m_connectionDepthOnOutletBranch), cvf::Vec3d::Z_AXIS);
cvf::Vec3d linePlaneIntersect;
if (depthPlane.intersect(lineStart, lineEnd, &linePlaneIntersect))
{
intersectionPoint = linePlaneIntersect;
}
}
}
}
}
}
}
if (!intersectionPoint.isUndefined())
{
// Find generated pipe branch this cell resides in
// and insert intersection point at start of list
bool foundBranchToInsertInto = false;
size_t i = 0;
while(!foundBranchToInsertInto && i < pipeBranchesCellIds.size())
{
size_t j = 0;
while(!foundBranchToInsertInto && j < pipeBranchesCellIds[i].size())
{
const RigWellResultCell& candidate = pipeBranchesCellIds[i][j];
if (isIdentical(&candidate, &branchToConnect.m_wellCells[0]))
{
pipeBranchesCellIds[i].insert(pipeBranchesCellIds[i].begin(), candidate);
pipeBranchesCLCoords[i].insert(pipeBranchesCLCoords[i].begin(), intersectionPoint);
foundBranchToInsertInto = true;
}
j++;
}
i++;
}
}
else
{
// Could not detect intersection, use well head as fall back?
// Currently, if nothing is found, the end of the branch closest to well head is not connected to main branch
}
}
}
}
}
CVF_ASSERT(pipeBranchesCellIds.size() == pipeBranchesCLCoords.size());
@ -556,7 +541,12 @@ void RivWellPipesPartMgr::updatePipeResultColor(size_t frameIndex)
for (size_t wcIdx = 0; wcIdx < cellIds.size(); ++wcIdx)
{
// we need a faster lookup, I guess
const RigWellResultCell* wResCell = wResFrame.findResultCell(cellIds[wcIdx].m_gridIndex, cellIds[wcIdx].m_gridCellIndex);
const RigWellResultCell* wResCell = NULL;
if (cellIds[wcIdx].hasGridConnections())
{
wResCell = wResFrame.findResultCell(cellIds[wcIdx].m_gridIndex, cellIds[wcIdx].m_gridCellIndex);
}
if (wResCell == NULL)
{

View File

@ -1025,6 +1025,29 @@ void RimReservoirView::appendCellResultInfo(size_t gridIndex, size_t cellIndex,
}
}
}
cvf::Collection<RigSingleWellResultsData> wellResults = m_reservoir->reservoirData()->wellResults();
for (size_t i = 0; i < wellResults.size(); i++)
{
RigSingleWellResultsData* singleWellResultData = wellResults.at(i);
if (m_currentTimeStep < singleWellResultData->firstResultTimeStep())
{
continue;
}
const RigWellResultFrame& wellResultFrame = singleWellResultData->wellResultFrame(m_currentTimeStep);
const RigWellResultCell* wellResultCell = wellResultFrame.findResultCell(gridIndex, cellIndex);
if (wellResultCell)
{
resultInfoText->append(QString("(0-based) Branch Id : %1 Segment Id %2\n").arg(wellResultCell->m_ertBranchId).arg(wellResultCell->m_ertSegmentId));
if (wellResultCell->hasBranchConnections())
{
resultInfoText->append(QString("Branch Connection Count : %1\n").arg(wellResultCell->m_connectedBranchCount));
resultInfoText->append(QString("Center coord : %1 %2 %3\n").arg(wellResultCell->m_interpolatedCenter.x()).arg(wellResultCell->m_interpolatedCenter.y()).arg(wellResultCell->m_interpolatedCenter.z()));
}
}
}
}
}
@ -1381,6 +1404,11 @@ void RimReservoirView::calculateVisibleWellCellsIncFence(cvf::UByteArray* visibl
{
if (wsResCells[cIdx].m_gridIndex == grid->gridIndex())
{
if (!wsResCells[cIdx].hasGridConnections())
{
continue;
}
size_t gridCellIndex = wsResCells[cIdx].m_gridCellIndex;
(*visibleCells)[gridCellIndex] = true;

View File

@ -196,13 +196,16 @@ bool RimWell::calculateWellPipeVisibility(size_t frameIndex)
const std::vector<RigWellResultCell>& wsResCells = wellResSegments[wsIdx].m_wellCells;
for (size_t cIdx = 0; cIdx < wsResCells.size(); ++ cIdx)
{
gridIndex = wsResCells[cIdx].m_gridIndex;
gridCellIndex = wsResCells[cIdx].m_gridCellIndex;
cvf::cref<cvf::UByteArray> cellVisibility = rvMan->cellVisibility(visGridParts[gpIdx], gridIndex, frameIndex);
if ((*cellVisibility)[gridCellIndex])
if (wsResCells[cIdx].hasGridConnections())
{
return true;
gridIndex = wsResCells[cIdx].m_gridIndex;
gridCellIndex = wsResCells[cIdx].m_gridCellIndex;
cvf::cref<cvf::UByteArray> cellVisibility = rvMan->cellVisibility(visGridParts[gpIdx], gridIndex, frameIndex);
if ((*cellVisibility)[gridCellIndex])
{
return true;
}
}
}
}

View File

@ -178,10 +178,11 @@ void RigCaseData::computeWellCellsPrGrid()
gridIndex = wellSegment.m_wellCells[cdIdx].m_gridIndex;
gridCellIndex = wellSegment.m_wellCells[cdIdx].m_gridCellIndex;
CVF_ASSERT(gridIndex < m_wellCellsInGrid.size() && gridCellIndex < m_wellCellsInGrid[gridIndex]->size());
m_wellCellsInGrid[gridIndex]->set(gridCellIndex, true);
m_gridCellToWellIndex[gridIndex]->set(gridCellIndex, static_cast<cvf::uint>(wIdx));
if(gridIndex < m_wellCellsInGrid.size() && gridCellIndex < m_wellCellsInGrid[gridIndex]->size())
{
m_wellCellsInGrid[gridIndex]->set(gridCellIndex, true);
m_gridCellToWellIndex[gridIndex]->set(gridCellIndex, static_cast<cvf::uint>(wIdx));
}
}
}
}

View File

@ -25,27 +25,53 @@
#include "RimDefines.h"
#include <QDateTime>
#include <vector>
#include "cvfVector3.h"
struct RigWellResultCell
{
RigWellResultCell() :
m_gridIndex(cvf::UNDEFINED_SIZE_T),
m_gridCellIndex(cvf::UNDEFINED_SIZE_T),
m_isOpen(false)
m_isOpen(false),
m_ertBranchId(-1),
m_ertSegmentId(-1),
m_interpolatedCenter(cvf::Vec3d::UNDEFINED),
m_connectedBranchCount(0)
{ }
bool hasBranchConnections() const
{
return m_connectedBranchCount != 0;
}
bool hasGridConnections() const
{
return m_gridCellIndex != cvf::UNDEFINED_SIZE_T;
}
bool hasConnections() const
{
return hasGridConnections() || hasBranchConnections();
}
size_t m_gridIndex;
size_t m_gridCellIndex; //< Index to cell which is included in the well
bool m_isOpen; //< Marks the well as open or closed as of Eclipse simulation
int m_ertBranchId;
int m_ertSegmentId;
cvf::Vec3d m_interpolatedCenter;
size_t m_connectedBranchCount;
};
struct RigWellResultBranch
{
RigWellResultBranch() :
m_branchIndex(cvf::UNDEFINED_SIZE_T),
m_ertBranchId(-1),
m_useBranchHeadAsCenterLineIntersectionTop(false)
m_ertBranchId(-1)
{}
size_t m_branchIndex;
@ -57,8 +83,6 @@ struct RigWellResultBranch
// For standard wells, this is always well head.
RigWellResultCell m_branchHead;
bool m_useBranchHeadAsCenterLineIntersectionTop;
// If the outlet segment does not have any connections, it is not possible to populate branch head
// Instead, use the intersection segment outlet branch index and the depth of this segment to identify intersection point
// when computing centerline coords in RivWellPipesPartMgr
@ -79,6 +103,8 @@ public:
const RigWellResultCell* findResultCell(size_t gridIndex, size_t gridCellIndex) const
{
CVF_ASSERT(gridIndex != cvf::UNDEFINED_SIZE_T && gridCellIndex != cvf::UNDEFINED_SIZE_T);
if (m_wellHead.m_gridCellIndex == gridCellIndex && m_wellHead.m_gridIndex == gridIndex )
{
return &m_wellHead;