#6086 Add porosity, porosity change and permeability calculation.

This commit is contained in:
Kristian Bendiksen
2020-06-22 23:20:03 +02:00
parent 52815742bb
commit 1c86cf4e33
7 changed files with 523 additions and 2 deletions

View File

@@ -94,6 +94,8 @@ add_library( ${PROJECT_NAME}
RigFemPartResultCalculatorStressAnisotropy.cpp
RigFemPartResultCalculatorPoreCompressibility.h
RigFemPartResultCalculatorPoreCompressibility.cpp
RigFemPartResultCalculatorPorosityPermeability.h
RigFemPartResultCalculatorPorosityPermeability.cpp
RimGeoMechGeometrySelectionItem.h
RimGeoMechGeometrySelectionItem.cpp
)

View File

@@ -0,0 +1,243 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultCalculatorPorosityPermeability.h"
#include "RiaEclipseUnitTools.h"
#include "RiaLogging.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemScalarResultFrames.h"
#include "cafProgressInfo.h"
#include <QString>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorPorosityPermeability::RigFemPartResultCalculatorPorosityPermeability(
RigFemPartResultsCollection& collection )
: RigFemPartResultCalculator( collection )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorPorosityPermeability::~RigFemPartResultCalculatorPorosityPermeability()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorPorosityPermeability::isMatching( const RigFemResultAddress& resVarAddr ) const
{
return ( resVarAddr.fieldName == "POROSITY-PERMEABILITY" &&
( resVarAddr.componentName == "PHI" || resVarAddr.componentName == "DPHI" ||
resVarAddr.componentName == "PERM" ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames*
RigFemPartResultCalculatorPorosityPermeability::calculate( int partIndex, const RigFemResultAddress& resVarAddr )
{
caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 6, "" );
frameCountProgress.setProgressDescription( "Calculating Porosity/Permeability" );
frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() );
RigFemScalarResultFrames* srcPorePressureDataFrames =
m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_NODAL, "POR-Bar", "" ) );
frameCountProgress.incrementProgress();
// Volumetric Strain
frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() );
RigFemScalarResultFrames* srcEVDataFrames =
m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, "NE", "EV" ) );
frameCountProgress.incrementProgress();
// Pore Compressibility
frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() );
RigFemScalarResultFrames* poreCompressibilityFrames =
m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, "COMPRESSIBILITY", "PORE" ) );
if ( poreCompressibilityFrames->frameData( 0 ).empty() )
{
RiaLogging::error( "Missing pore compressibility data." );
return nullptr;
}
frameCountProgress.incrementProgress();
// Initial permeability (k0)
frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() );
RigFemScalarResultFrames* initialPermeabilityFrames = nullptr;
if ( !m_resultCollection->initialPermeabilityAddress().isEmpty() )
{
initialPermeabilityFrames =
m_resultCollection
->findOrLoadScalarResult( partIndex,
RigFemResultAddress( RIG_ELEMENT,
m_resultCollection->initialPermeabilityAddress().toStdString(),
"" ) );
}
frameCountProgress.incrementProgress();
frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() );
RigFemScalarResultFrames* voidRatioFrames =
m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, "VOIDR", "" ) );
RigFemScalarResultFrames* porosityFrames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "PHI" ) );
RigFemScalarResultFrames* porosityDeltaFrames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "DPHI" ) );
RigFemScalarResultFrames* permeabilityFrames =
m_resultCollection->createScalarResult( partIndex,
RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "PERM" ) );
frameCountProgress.incrementProgress();
const RigFemPart* femPart = m_resultCollection->parts()->part( partIndex );
float inf = std::numeric_limits<float>::infinity();
frameCountProgress.setNextProgressIncrement( 1u );
int referenceFrameIdx = m_resultCollection->referenceTimeStep();
int frameCount = srcEVDataFrames->frameCount();
for ( int fIdx = 0; fIdx < frameCount; ++fIdx )
{
const std::vector<float>& evData = srcEVDataFrames->frameData( fIdx );
const std::vector<float>& referenceEvData = srcEVDataFrames->frameData( referenceFrameIdx );
const std::vector<float>& voidRatioData = voidRatioFrames->frameData( 0 );
const std::vector<float>& referencePorFrameData = srcPorePressureDataFrames->frameData( referenceFrameIdx );
const std::vector<float>& porFrameData = srcPorePressureDataFrames->frameData( fIdx );
const std::vector<float>& poreCompressibilityFrameData = poreCompressibilityFrames->frameData( fIdx );
std::vector<float>& porosityFrameData = porosityFrames->frameData( fIdx );
std::vector<float>& porosityDeltaFrameData = porosityDeltaFrames->frameData( fIdx );
std::vector<float>& permeabilityFrameData = permeabilityFrames->frameData( fIdx );
size_t valCount = evData.size();
porosityFrameData.resize( valCount );
porosityDeltaFrameData.resize( valCount );
permeabilityFrameData.resize( valCount );
int elementCount = femPart->elementCount();
std::vector<float> initialPermeabilityData;
if ( initialPermeabilityFrames )
{
initialPermeabilityData = initialPermeabilityFrames->frameData( fIdx );
}
#pragma omp parallel for
for ( int elmIdx = 0; elmIdx < elementCount; ++elmIdx )
{
RigElementType elmType = femPart->elementType( elmIdx );
int elmNodeCount = RigFemTypes::elementNodeCount( femPart->elementType( elmIdx ) );
if ( elmType == HEX8P )
{
for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx )
{
size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx );
if ( elmNodResIdx < evData.size() )
{
// User provides initial permeability
double initialPermeability = 1.0;
if ( initialPermeabilityData.empty() )
{
// 1. Same value for all cells
initialPermeability = m_resultCollection->initialPermeabilityFixed();
}
else
{
// 2. From element property table
initialPermeability = initialPermeabilityData[elmIdx];
}
int nodeIdx = femPart->nodeIdxFromElementNodeResultIdx( elmNodResIdx );
// Calculate initial porosity
double voidr = voidRatioData[elmNodResIdx];
double initialPorosity = voidr / ( 1.0 + voidr );
// Calculate difference in pore pressure between reference state and this state,
// and convert unit from Bar to Pascal.
double referencePorePressure = referencePorFrameData[nodeIdx];
double framePorePressure = porFrameData[nodeIdx];
double deltaPorePressure =
RiaEclipseUnitTools::barToPascal( framePorePressure - referencePorePressure );
// Pore compressibility. Convert from 1/GPa to 1/Pa.
double poreCompressibility = poreCompressibilityFrameData[elmNodResIdx] / 1.0e9;
// Volumetric strain
double deltaEv = evData[elmNodResIdx] - referenceEvData[elmNodResIdx];
// Porosity change between reference state and initial state (geostatic)
double deltaPorosity = initialPorosity * ( poreCompressibility * deltaPorePressure + deltaEv );
// Current porosity
double currentPorosity = initialPorosity + deltaPorosity;
// Permeability. Formula from Petunin, 2011.
double permeabilityExponent = m_resultCollection->permeabilityExponent();
double permeability =
initialPermeability * std::pow( currentPorosity / initialPorosity, permeabilityExponent );
porosityFrameData[elmNodResIdx] = currentPorosity;
porosityDeltaFrameData[elmNodResIdx] = deltaPorosity;
permeabilityFrameData[elmNodResIdx] = permeability;
}
}
}
else
{
for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx )
{
size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx );
if ( elmNodResIdx < poreCompressibilityFrameData.size() )
{
porosityFrameData[elmNodResIdx] = inf;
porosityDeltaFrameData[elmNodResIdx] = inf;
permeabilityFrameData[elmNodResIdx] = inf;
}
}
}
}
frameCountProgress.incrementProgress();
}
RigFemScalarResultFrames* requestedResultFrames = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr );
return requestedResultFrames;
}

View File

@@ -0,0 +1,37 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RigFemPartResultCalculator.h"
class RigFemPartResultsCollection;
class RigFemScalarResultFrames;
class RigFemResultAddress;
//==================================================================================================
///
//==================================================================================================
class RigFemPartResultCalculatorPorosityPermeability : public RigFemPartResultCalculator
{
public:
explicit RigFemPartResultCalculatorPorosityPermeability( RigFemPartResultsCollection& collection );
virtual ~RigFemPartResultCalculatorPorosityPermeability();
bool isMatching( const RigFemResultAddress& resVarAddr ) const override;
RigFemScalarResultFrames* calculate( int partIndex, const RigFemResultAddress& resVarAddr ) override;
};

View File

@@ -23,7 +23,6 @@
#include "RifElementPropertyReader.h"
#include "RifGeoMechReaderInterface.h"
#include "RigFemPartResultCalculatorPoreCompressibility.h"
#ifdef USE_ODB_API
#include "RifOdbReader.h"
@@ -45,6 +44,8 @@
#include "RigFemPartResultCalculatorNormalSE.h"
#include "RigFemPartResultCalculatorNormalST.h"
#include "RigFemPartResultCalculatorNormalized.h"
#include "RigFemPartResultCalculatorPoreCompressibility.h"
#include "RigFemPartResultCalculatorPorosityPermeability.h"
#include "RigFemPartResultCalculatorPrincipalStrain.h"
#include "RigFemPartResultCalculatorPrincipalStress.h"
#include "RigFemPartResultCalculatorQ.h"
@@ -113,6 +114,10 @@ RigFemPartResultsCollection::RigFemPartResultsCollection( RifGeoMechReaderInterf
m_referenceTimeStep = 0;
m_initialPermeabilityFixed = 1.0;
m_initialPermeabilityResultAddress = "";
m_permeabilityExponent = 1.0;
m_resultCalculators.push_back(
std::unique_ptr<RigFemPartResultCalculator>( new RigFemPartResultCalculatorTimeLapse( *this ) ) );
m_resultCalculators.push_back(
@@ -166,6 +171,8 @@ RigFemPartResultsCollection::RigFemPartResultsCollection( RifGeoMechReaderInterf
std::unique_ptr<RigFemPartResultCalculator>( new RigFemPartResultCalculatorStressAnisotropy( *this ) ) );
m_resultCalculators.push_back(
std::unique_ptr<RigFemPartResultCalculator>( new RigFemPartResultCalculatorPoreCompressibility( *this ) ) );
m_resultCalculators.push_back(
std::unique_ptr<RigFemPartResultCalculator>( new RigFemPartResultCalculatorPorosityPermeability( *this ) ) );
m_resultCalculators.push_back(
std::unique_ptr<RigFemPartResultCalculator>( new RigFemPartResultCalculatorFormationIndices( *this ) ) );
}
@@ -374,6 +381,13 @@ void RigFemPartResultsCollection::setBiotCoefficientParameters( double biotFixed
deleteResult( RigFemResultAddress( elementType, "ST", "Q", RigFemResultAddress::allTimeLapsesValue() ) );
}
// Depends on COMRESSIBILITY.PORE which depends on biot coefficient
std::set<RigFemResultAddress> initPermResults = initialPermeabilityDependentResults();
for ( auto result : initPermResults )
{
deleteResult( result );
}
for ( auto fieldName : {"SE", "ST"} )
{
// Surface aligned stress
@@ -419,6 +433,48 @@ int RigFemPartResultsCollection::referenceTimeStep() const
return m_referenceTimeStep;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::setPermeabilityParameters( double fixedInitalPermeability,
const QString& initialPermeabilityAddress,
double permeabilityExponent )
{
m_initialPermeabilityFixed = fixedInitalPermeability;
m_initialPermeabilityResultAddress = initialPermeabilityAddress;
m_permeabilityExponent = permeabilityExponent;
std::set<RigFemResultAddress> results = initialPermeabilityDependentResults();
for ( auto result : results )
{
deleteResult( result );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigFemPartResultsCollection::initialPermeabilityFixed() const
{
return m_initialPermeabilityFixed;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RigFemPartResultsCollection::initialPermeabilityAddress() const
{
return m_initialPermeabilityResultAddress;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigFemPartResultsCollection::permeabilityExponent() const
{
return m_permeabilityExponent;
}
//--------------------------------------------------------------------------------------------------
/// Will always return a valid object, but it can be empty
//--------------------------------------------------------------------------------------------------
@@ -636,6 +692,10 @@ std::map<std::string, std::vector<std::string>>
fieldCompNames["COMPRESSIBILITY"].push_back( "PORE" );
fieldCompNames["COMPRESSIBILITY"].push_back( "VERTICAL" );
fieldCompNames["COMPRESSIBILITY"].push_back( "VERTICAL-RATIO" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "PHI" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "DPHI" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "PERM" );
}
else if ( resPos == RIG_INTEGRATION_POINT )
{
@@ -715,6 +775,10 @@ std::map<std::string, std::vector<std::string>>
fieldCompNames["COMPRESSIBILITY"].push_back( "PORE" );
fieldCompNames["COMPRESSIBILITY"].push_back( "VERTICAL" );
fieldCompNames["COMPRESSIBILITY"].push_back( "VERTICAL-RATIO" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "PHI" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "DPHI" );
fieldCompNames["POROSITY-PERMEABILITY"].push_back( "PERM" );
}
else if ( resPos == RIG_ELEMENT_NODAL_FACE )
{
@@ -1242,11 +1306,35 @@ std::set<RigFemResultAddress> RigFemPartResultsCollection::referenceCaseDependen
"COMPRESSIBILITY",
"VERTICAL-RATIO",
RigFemResultAddress::allTimeLapsesValue() ) );
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "PHI", RigFemResultAddress::allTimeLapsesValue() ) );
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "DPHI", RigFemResultAddress::allTimeLapsesValue() ) );
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "PERM", RigFemResultAddress::allTimeLapsesValue() ) );
}
return results;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::set<RigFemResultAddress> RigFemPartResultsCollection::initialPermeabilityDependentResults()
{
std::set<RigFemResultAddress> results;
for ( auto elementType : {RIG_ELEMENT_NODAL, RIG_INTEGRATION_POINT} )
{
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "PHI", RigFemResultAddress::allTimeLapsesValue() ) );
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "DPHI", RigFemResultAddress::allTimeLapsesValue() ) );
results.insert(
RigFemResultAddress( elementType, "POROSITY-PERMEABILITY", "PERM", RigFemResultAddress::allTimeLapsesValue() ) );
return results;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@@ -73,6 +73,13 @@ public:
double biotFixedFactor() const { return m_biotFixedFactor; }
QString biotResultAddress() const { return m_biotResultAddress; }
void setPermeabilityParameters( double fixedInitalPermeability,
const QString& initialPermeabilityAddress,
double permeabilityExponent );
double initialPermeabilityFixed() const;
QString initialPermeabilityAddress() const;
double permeabilityExponent() const;
std::map<std::string, std::vector<std::string>> scalarFieldAndComponentNames( RigFemResultPosEnum resPos );
std::vector<std::string> filteredStepNames() const;
bool assertResultsLoaded( const RigFemResultAddress& resVarAddr );
@@ -136,6 +143,8 @@ public:
static std::set<RigFemResultAddress> referenceCaseDependentResults();
static bool isReferenceCaseDependentResult( const RigFemResultAddress& result );
static std::set<RigFemResultAddress> initialPermeabilityDependentResults();
RigFemScalarResultFrames* findOrLoadScalarResult( int partIndex, const RigFemResultAddress& resVarAddr );
RigFemScalarResultFrames* createScalarResult( int partIndex, const RigFemResultAddress& resVarAddr );
@@ -162,6 +171,10 @@ private:
double m_biotFixedFactor;
QString m_biotResultAddress;
double m_initialPermeabilityFixed;
QString m_initialPermeabilityResultAddress;
double m_permeabilityExponent;
int m_referenceTimeStep;
std::vector<std::unique_ptr<RigFemPartResultCalculator>> m_resultCalculators;