Remove obsolete code: StimPlaneUpscaling and Transmissibilities

This commit is contained in:
Jacob Støren 2017-06-14 11:25:43 +02:00
parent f87a186648
commit 1d405384ee
11 changed files with 31 additions and 1567 deletions

View File

@ -22,7 +22,6 @@ ${CEE_CURRENT_LIST_DIR}RifReaderMockModel.h
${CEE_CURRENT_LIST_DIR}RifReaderSettings.h ${CEE_CURRENT_LIST_DIR}RifReaderSettings.h
${CEE_CURRENT_LIST_DIR}RifEclipseSummaryAddress.h ${CEE_CURRENT_LIST_DIR}RifEclipseSummaryAddress.h
${CEE_CURRENT_LIST_DIR}RifWellPathImporter.h ${CEE_CURRENT_LIST_DIR}RifWellPathImporter.h
${CEE_CURRENT_LIST_DIR}RifFractureExportTools.h
${CEE_CURRENT_LIST_DIR}RifStimPlanXmlReader.h ${CEE_CURRENT_LIST_DIR}RifStimPlanXmlReader.h
) )
@ -44,7 +43,6 @@ ${CEE_CURRENT_LIST_DIR}RifReaderMockModel.cpp
${CEE_CURRENT_LIST_DIR}RifReaderSettings.cpp ${CEE_CURRENT_LIST_DIR}RifReaderSettings.cpp
${CEE_CURRENT_LIST_DIR}RifEclipseSummaryAddress.cpp ${CEE_CURRENT_LIST_DIR}RifEclipseSummaryAddress.cpp
${CEE_CURRENT_LIST_DIR}RifWellPathImporter.cpp ${CEE_CURRENT_LIST_DIR}RifWellPathImporter.cpp
${CEE_CURRENT_LIST_DIR}RifFractureExportTools.cpp
${CEE_CURRENT_LIST_DIR}RifStimPlanXmlReader.cpp ${CEE_CURRENT_LIST_DIR}RifStimPlanXmlReader.cpp
) )

View File

@ -1,650 +0,0 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifFractureExportTools.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RigEclipseCaseData.h"
#include "RigFractureTransCalc.h"
#include "RigFractureCell.h"
#include "RigMainGrid.h"
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RimEclipseCase.h"
#include "RimEclipseResultDefinition.h"
#include "RimEclipseView.h"
#include "RimEclipseWell.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureTemplate.h"
#include "RimSimWellFracture.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimWellPath.h"
#include "cafProgressInfo.h"
#include <QFile>
#include <QString>
#include <QTextStream>
#include "RigStimPlanUpscalingCalc.h"
#include "RigTransmissibilityCondenser.h"
#include "RigWellPathStimplanIntersector.h"
#include "RigFractureGrid.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifFractureExportTools::exportFracturesToEclipseDataInputFile(const QString& fileName, const std::vector< RimFracture*>& fractures, RimEclipseCase* caseToApply)
{
RiaLogging::info(QString("Computing and writing COMPDAT values to file %1").arg(fileName));
const RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
if (!mainGrid) return false;
QFile file(fileName);
if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
return false;
}
caf::ProgressInfo pi(fractures.size(), QString("Writing data to file %1").arg(fileName));
size_t progress = 0;
std::vector<size_t> ijk;
QTextStream out(&file);
out << "\n";
out << "-- Exported from ResInsight" << "\n";
QString wellName;
{
RimEclipseWell* simWell = nullptr;
fractures[0]->firstAncestorOrThisOfType(simWell);
if ( simWell ) wellName = simWell->name;
RimWellPath* wellPath = nullptr;
fractures[0]->firstAncestorOrThisOfType(wellPath);
if ( wellPath ) wellName = wellPath->name;
}
RigEclipseCaseData::UnitsType caseUnit = caseToApply->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC) out << "-- Using metric unit system" << "\n";
if (caseUnit == RigEclipseCaseData::UNITS_FIELD) out << "-- Using field unit system" << "\n";
out << "\n";
//Included for debug / prototyping only
printTransmissibilityFractureToWell(fractures, out, caseToApply);
printStimPlanFractureTrans(fractures, caseToApply, out);
printStimPlanCellsMatrixTransContributions(fractures, caseToApply, out, wellName, mainGrid);
printBackgroundDataHeaderLine(out);
RiaLogging::debug(QString("Writing intermediate results from COMPDAT calculation"));
std::map<RimFracture*, std::vector<RigFracturedEclipseCellExportData> > exportDataPrFracture;
for (RimFracture* fracture : fractures)
{
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
//TODO: Check that there is a fracture template available for given fracture....
std::vector<RigFracturedEclipseCellExportData> fracDataVector = transmissibilityCalculator.computeTransmissibilityFromPolygonWithInfiniteConductivityInFracture();
exportDataPrFracture[fracture] = fracDataVector;
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
printBackgroundData(out, wellName, fracture, mainGrid, fracData);
}
}
out << "\n";
out << qSetFieldWidth(7) << "COMPDAT" << "\n" << right << qSetFieldWidth(8);
for (RimFracture* fracture : fractures)
{
RiaLogging::debug(QString("Writing COMPDAT values for fracture %1").arg(fracture->name()));
std::vector<RigFracturedEclipseCellExportData> fracDataVector = exportDataPrFracture[fracture];
double skinFactor = cvf::UNDEFINED_DOUBLE;
if (fracture->fractureTemplate()) skinFactor = fracture->fractureTemplate()->skinFactor();
QString fractureName = fracture->name();
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
if ( fracData.transmissibility > 0 )
{
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
printCOMPDATvalues(out, fracData.transmissibility, i, j, k, fractureName, skinFactor, wellName);
}
}
//TODO: If same cell is used for multiple fractures, the sum of contributions should be added to table.
progress++;
pi.setProgress(progress);
}
out << "/ \n";
RiaLogging::info(QString("Competed writing COMPDAT data to file %1").arg(fileName));
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printCOMPDATvalues(QTextStream & out,
double transmissibility,
size_t i, size_t j, size_t k,
const QString& fractureName,
double skinFactor,
const QString& wellName)
{
out << qSetFieldWidth(8);
if (transmissibility == cvf::UNDEFINED_DOUBLE || skinFactor == cvf::UNDEFINED_DOUBLE)
{
out << "--"; //Commenting out line in output file
}
out << wellName;
out << qSetFieldWidth(5);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 5. K location of lower connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << "2* "; // Default value for
//6. Open / Shut flag of connection
// 7. Saturation table number for connection rel perm. Default value
out << qSetFieldWidth(12);
// 8. Transmissibility
if (transmissibility != cvf::UNDEFINED_DOUBLE)
{
out << QString::number(transmissibility, 'e', 4);
}
else
{
out << "UNDEF";
}
out << qSetFieldWidth(4);
out << "2* "; // Default value for
// 9. Well bore diameter. Set to default
// 10. Effective Kh (perm times width)
if (skinFactor != cvf::UNDEFINED_DOUBLE)
{
out << skinFactor; // 11. Skin factor
}
else //If no attached fracture definition these parameters are set to UNDEF
{
out << "UNDEF";
}
out << "/";
out << " " << fractureName; //Fracture name as comment
out << "\n"; // Terminating entry
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanCellsMatrixTransContributions(const std::vector<RimFracture *>& fractures,
RimEclipseCase* caseToApply,
QTextStream &out,
const QString& wellName,
const RigMainGrid* mainGrid)
{
out << "StimPlan cells' matrix transmissibility and Eclipse Cell contributions \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << "Well name "; // 1. Well name
out << qSetFieldWidth(16);
out << "Fracture name ";
out << qSetFieldWidth(5);
out << "Ec i";
out << "Ec j";
out << "Ec k";
out << qSetFieldWidth(10);
out << "Ecl cell";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tm contr";
out << "\n";
for (RimFracture* fracture : fractures)
{
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
double cDarcyInCorrectUnit = caseToApply->eclipseCaseData()->darchysValue();
std::vector<RigFractureCell> stimPlanCells = fracTemplateStimPlan->fractureGrid()->fractureCells();
for (RigFractureCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
continue;
}
RigEclipseToStimPlanCellTransmissibilityCalculator eclToStimPlanTransCalc(caseToApply,
fracture->transformMatrix(),
fracture->fractureTemplate()->skinFactor,
cDarcyInCorrectUnit,
stimPlanCell);
std::vector<size_t> stimPlanContributingEclipseCells = eclToStimPlanTransCalc.globalIndeciesToContributingEclipseCells();
std::vector<double> stimPlanContributingEclipseCellTransmissibilities = eclToStimPlanTransCalc.contributingEclipseCellTransmissibilities();
for (size_t i = 0; i < stimPlanContributingEclipseCells.size(); i++)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << wellName + " ";
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t ii, jj, kk;
mainGrid->ijkFromCellIndex(stimPlanContributingEclipseCells[i], &ii, &jj, &kk);
out << ii + 1;
out << jj + 1;
out << kk + 1;
out << qSetFieldWidth(10);
out << stimPlanContributingEclipseCells[i];
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(stimPlanContributingEclipseCellTransmissibilities[i], 'e', 3);
out << "\n";
}
//TODO: add RigFractureStimPlanCellData to m_StimPlanCellsFractureData i RigFracture???
}
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanFractureTrans(const std::vector<RimFracture *>& fractures, RimEclipseCase* caseToApply, QTextStream &out)
{
double cDarcyInCorrectUnit = caseToApply->eclipseCaseData()->darchysValue();
out << "StimPlan cells' fracture transmissibility \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tf_hor";
out << "Tf_vert";
out << "\n";
if (fractures.size() < 1) return;
RimFracture* fracture = fractures[0];
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else return;
std::vector<RigFractureCell> stimPlanCells = fracTemplateStimPlan->fractureGrid()->fractureCells();
for (RigFractureCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
//If conductivity in stimPlanCell is 0, contributions might not be relevant...
continue;
}
double verticalTrans = RigFractureTransmissibilityEquations::centerToEdgeFractureCellTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
cDarcyInCorrectUnit);
double horizontalTrans = RigFractureTransmissibilityEquations::centerToEdgeFractureCellTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeZ(),
stimPlanCell.cellSizeX(),
cDarcyInCorrectUnit);
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(verticalTrans, 'e', 3);
out << QString::number(horizontalTrans, 'e', 3);
out << "\n";
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundDataHeaderLine(QTextStream & out)
{
out << "-- Background data for calculation" << "\n\n";
//Write header line
out << qSetFieldWidth(4);
out << "--";
out << qSetFieldWidth(12);
out << "Well ";
out << qSetFieldWidth(16);
out << "Fracture ";
out << qSetFieldWidth(5);
out << "i";
out << "j";
out << "k";
out << qSetFieldWidth(12);
out << "Ax";
out << "Ay";
out << "Az";
out << "TotArea";
out << "skinfac";
out << "FracLen";
out << qSetFieldWidth(10);
out << "DX";
out << "DY";
out << "DZ";
out << qSetFieldWidth(12);
out << "PermX";
out << "PermY";
out << "PermZ";
out << qSetFieldWidth(8);
out << "NTG";
out << qSetFieldWidth(12);
out << "T_x";
out << "T_y";
out << "T_z";
out << qSetFieldWidth(15);
out << "Transm";
out << qSetFieldWidth(20);
out << "Status";
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundData(QTextStream & out, const QString& wellName, RimFracture* fracture, const RigMainGrid* mainGrid, RigFracturedEclipseCellExportData &fracData)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << wellName + " ";
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << qSetFieldWidth(12);
//Use f for float, e for exponent float and g for best choice of these two.
out << QString::number(fracData.projectedAreas.x(), 'g', 4);
out << QString::number(fracData.projectedAreas.y(), 'g', 4);
out << QString::number(fracData.projectedAreas.z(), 'g', 4);
out << QString::number(fracData.totalArea, 'g', 4);
out << QString::number(fracData.skinFactor, 'f', 2);
out << QString::number(fracData.fractureLenght, 'g', 3);
out << qSetFieldWidth(10);
out << QString::number(fracData.cellSizes.x(), 'f', 2);
out << QString::number(fracData.cellSizes.y(), 'f', 2);
out << QString::number(fracData.cellSizes.z(), 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.permeabilities.x(), 'e', 3);
out << QString::number(fracData.permeabilities.y(), 'e', 3);
out << QString::number(fracData.permeabilities.z(), 'e', 3);
out << qSetFieldWidth(8);
out << QString::number(fracData.NTG, 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.transmissibilities.x(), 'e', 3);
out << QString::number(fracData.transmissibilities.y(), 'e', 3);
out << QString::number(fracData.transmissibilities.z(), 'e', 3);
out << qSetFieldWidth(15);
out << QString::number(fracData.transmissibility, 'e', 3);
if (!fracData.cellIsActive)
{
out << qSetFieldWidth(20);
out << " INACTIVE CELL ";
}
else if (fracData.cellIsActive && fracData.transmissibility > 0)
{
out << qSetFieldWidth(20);
out << " ACTIVE CELL ";
}
else
{
out << qSetFieldWidth(20);
out << " INVALID DATA ";
}
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printTransmissibilityFractureToWell(const std::vector<RimFracture *>& fractures, QTextStream &out, RimEclipseCase* caseToApply)
{
out << "-- Transmissibility From Fracture To Well \n";
out << qSetFieldWidth(12);
out << "Well name ";
out << qSetFieldWidth(16);
out << "Fracture name ";
out << "Inflow type ";
out << qSetFieldWidth(5);
out << " i ";
out << " j ";
out << "Tw";
out << "\n";
for (RimFracture* fracture : fractures)
{
out << qSetFieldWidth(12);
RimEclipseWell* simWell = nullptr;
RimWellPath* wellPath = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " "; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
if (fracture->fractureTemplate()->orientationType == RimFractureTemplate::ALONG_WELL_PATH)
{
out << "Linear inflow";
out << qSetFieldWidth(5);
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
//TODO: Can be removed when implementation of dip angle is more general:
RimSimWellFracture* simWellFrac;
if (dynamic_cast<RimSimWellFracture*>(fracture))
{
simWellFrac = dynamic_cast<RimSimWellFracture*>(fracture);
}
else continue;
double wellDip = simWellFrac->wellDipAtFracturePosition();
double perforationLengthVert = fracture->perforationLength * cos(wellDip);
double perforationLengthHor = fracture->perforationLength * sin(wellDip);
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->fractureGrid()->fractureCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
//RigStimPlanCell* stimPlanCell = fracTemplateStimPlan->getStimPlanCellAtIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second);
const RigFractureCell& stimPlanCell = fracTemplateStimPlan->fractureGrid()->cellFromIndex(fracTemplateStimPlan->fractureGrid()->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
double linTransInStimPlanCell = RigFractureTransmissibilityEquations::fractureCellToWellLinearTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
perforationLengthVert,
perforationLengthHor,
fracture->perforationEfficiency,
fracture->fractureTemplate()->skinFactor(),
caseToApply->eclipseCaseData()->darchysValue());
out << qSetFieldWidth(10);
out << QString::number(linTransInStimPlanCell, 'f', 2);
out << "\n";
}
if (fracture->fractureTemplate()->orientationType == RimFractureTemplate::TRANSVERSE_WELL_PATH
|| fracture->fractureTemplate()->orientationType == RimFractureTemplate::AZIMUTH)
{
out << "Radial inflow";
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->fractureGrid()->fractureCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
const RigFractureCell& stimPlanCell = fracTemplateStimPlan->fractureGrid()->cellFromIndex(fracTemplateStimPlan->fractureGrid()->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
double radTransInStimPlanCell = RigFractureTransmissibilityEquations::fractureCellToWellRadialTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
fracture->wellRadius(),
fracture->fractureTemplate()->skinFactor(),
caseToApply->eclipseCaseData()->darchysValue());
out << qSetFieldWidth(10);
out << QString::number(radTransInStimPlanCell, 'f', 2);
out << "\n";
}
}
out << "\n";
}

View File

@ -1,82 +0,0 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "cvfBase.h"
#include "cvfObject.h"
#include "cvfLibCore.h"
#include "ert/ecl/ecl_kw.h"
#include <map>
#include <QString>
class QFile;
class QTextStream;
class RigFracturedEclipseCellExportData;
class RigMainGrid;
class RimEclipseCase;
class RimEclipseWell;
class RimFracture;
class RimFracture;
class RimWellPath;
//==================================================================================================
//
// Class for access to Eclipse "keyword" files using libecl
//
//==================================================================================================
class RifFractureExportTools
{
public:
static bool exportFracturesToEclipseDataInputFile(const QString& fileName,
const std::vector<RimFracture*>& fractures,
RimEclipseCase* caseToApply);
private:
static void printCOMPDATvalues(QTextStream & out,
double transmissibility,
size_t i, size_t j, size_t k,
const QString& fractureName,
double skinFactor,
const QString& wellName);
static void printStimPlanCellsMatrixTransContributions(const std::vector<RimFracture *>& fractures,
RimEclipseCase* caseToApply,
QTextStream &out,
const QString& wellName,
const RigMainGrid* mainGrid);
static void printStimPlanFractureTrans(const std::vector<RimFracture *>& fractures,
RimEclipseCase* caseToApply,
QTextStream &out);
static void printTransmissibilityFractureToWell(const std::vector<RimFracture *>& fractures,
QTextStream &out,
RimEclipseCase* caseToApply);
static void printBackgroundDataHeaderLine(QTextStream & out);
static void printBackgroundData(QTextStream & out,
const QString& wellName,
RimFracture* fracture,
const RigMainGrid* mainGrid,
RigFracturedEclipseCellExportData &fracData);
};

View File

@ -22,7 +22,6 @@
#include "RiaLogging.h" #include "RiaLogging.h"
#include "RigStimPlanFractureDefinition.h" #include "RigStimPlanFractureDefinition.h"
#include "RigFractureTransCalc.h"
#include "RigFractureGrid.h" #include "RigFractureGrid.h"
#include "RimEclipseView.h" #include "RimEclipseView.h"

View File

@ -57,13 +57,11 @@ ${CEE_CURRENT_LIST_DIR}RigSummaryCaseData.h
${CEE_CURRENT_LIST_DIR}RigLasFileExporter.h ${CEE_CURRENT_LIST_DIR}RigLasFileExporter.h
${CEE_CURRENT_LIST_DIR}RigSimulationWellCoordsAndMD.h ${CEE_CURRENT_LIST_DIR}RigSimulationWellCoordsAndMD.h
${CEE_CURRENT_LIST_DIR}RigFishbonesGeometry.h ${CEE_CURRENT_LIST_DIR}RigFishbonesGeometry.h
${CEE_CURRENT_LIST_DIR}RigFractureTransCalc.h
${CEE_CURRENT_LIST_DIR}RigFractureTransmissibilityEquations.h ${CEE_CURRENT_LIST_DIR}RigFractureTransmissibilityEquations.h
${CEE_CURRENT_LIST_DIR}RigWellPathStimplanIntersector.h ${CEE_CURRENT_LIST_DIR}RigWellPathStimplanIntersector.h
${CEE_CURRENT_LIST_DIR}RigTesselatorTools.h ${CEE_CURRENT_LIST_DIR}RigTesselatorTools.h
${CEE_CURRENT_LIST_DIR}RigCellGeometryTools.h ${CEE_CURRENT_LIST_DIR}RigCellGeometryTools.h
${CEE_CURRENT_LIST_DIR}RigStimPlanFractureDefinition.h ${CEE_CURRENT_LIST_DIR}RigStimPlanFractureDefinition.h
${CEE_CURRENT_LIST_DIR}RigStimPlanUpscalingCalc.h
${CEE_CURRENT_LIST_DIR}RigFractureGrid.h ${CEE_CURRENT_LIST_DIR}RigFractureGrid.h
${CEE_CURRENT_LIST_DIR}RigFractureCell.h ${CEE_CURRENT_LIST_DIR}RigFractureCell.h
${CEE_CURRENT_LIST_DIR}RigWellPathIntersectionTools.h ${CEE_CURRENT_LIST_DIR}RigWellPathIntersectionTools.h
@ -119,13 +117,11 @@ ${CEE_CURRENT_LIST_DIR}RigSummaryCaseData.cpp
${CEE_CURRENT_LIST_DIR}RigLasFileExporter.cpp ${CEE_CURRENT_LIST_DIR}RigLasFileExporter.cpp
${CEE_CURRENT_LIST_DIR}RigSimulationWellCoordsAndMD.cpp ${CEE_CURRENT_LIST_DIR}RigSimulationWellCoordsAndMD.cpp
${CEE_CURRENT_LIST_DIR}RigFishbonesGeometry.cpp ${CEE_CURRENT_LIST_DIR}RigFishbonesGeometry.cpp
${CEE_CURRENT_LIST_DIR}RigFractureTransCalc.cpp
${CEE_CURRENT_LIST_DIR}RigFractureTransmissibilityEquations.cpp ${CEE_CURRENT_LIST_DIR}RigFractureTransmissibilityEquations.cpp
${CEE_CURRENT_LIST_DIR}RigWellPathStimplanIntersector.cpp ${CEE_CURRENT_LIST_DIR}RigWellPathStimplanIntersector.cpp
${CEE_CURRENT_LIST_DIR}RigTesselatorTools.cpp ${CEE_CURRENT_LIST_DIR}RigTesselatorTools.cpp
${CEE_CURRENT_LIST_DIR}RigCellGeometryTools.cpp ${CEE_CURRENT_LIST_DIR}RigCellGeometryTools.cpp
${CEE_CURRENT_LIST_DIR}RigStimPlanFractureDefinition.cpp ${CEE_CURRENT_LIST_DIR}RigStimPlanFractureDefinition.cpp
${CEE_CURRENT_LIST_DIR}RigStimPlanUpscalingCalc.cpp
${CEE_CURRENT_LIST_DIR}RigFractureGrid.cpp ${CEE_CURRENT_LIST_DIR}RigFractureGrid.cpp
${CEE_CURRENT_LIST_DIR}RigFractureCell.cpp ${CEE_CURRENT_LIST_DIR}RigFractureCell.cpp
${CEE_CURRENT_LIST_DIR}RigWellPathIntersectionTools.cpp ${CEE_CURRENT_LIST_DIR}RigWellPathIntersectionTools.cpp

View File

@ -22,7 +22,6 @@
#include "RigCellGeometryTools.h" #include "RigCellGeometryTools.h"
#include "RigEclipseCaseData.h" #include "RigEclipseCaseData.h"
#include "RigFractureCell.h" #include "RigFractureCell.h"
#include "RigFractureTransCalc.h"
#include "RigFractureTransmissibilityEquations.h" #include "RigFractureTransmissibilityEquations.h"
#include "RigMainGrid.h" #include "RigMainGrid.h"
#include "RigResultAccessorFactory.h" #include "RigResultAccessorFactory.h"
@ -135,7 +134,7 @@ void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsM
mainGrid->cellCornerVertices(fracCell, hexCorners.data()); mainGrid->cellCornerVertices(fracCell, hexCorners.data());
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons; std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
bool isPlanIntersected = RigFractureTransCalc::planeCellIntersectionPolygons(hexCorners.data(), m_fractureTransform, planeCellPolygons); bool isPlanIntersected = planeCellIntersectionPolygons(hexCorners.data(), m_fractureTransform, planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.size() == 0) continue; if (!isPlanIntersected || planeCellPolygons.size() == 0) continue;
cvf::Vec3d localX; cvf::Vec3d localX;
@ -242,3 +241,28 @@ std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPoten
return cellIndices; return cellIndices;
} }
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigEclipseToStimPlanCellTransmissibilityCalculator::planeCellIntersectionPolygons(cvf::Vec3d hexCorners[8],
cvf::Mat4f transformMatrixForPlane,
std::vector<std::vector<cvf::Vec3d> > & polygons)
{
bool isCellIntersected = false;
cvf::Plane fracturePlane;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(transformMatrixForPlane.translation()),
static_cast<cvf::Vec3d>(transformMatrixForPlane.col(2)));
//Find line-segments where cell and fracture plane intersects
std::list<std::pair<cvf::Vec3d, cvf::Vec3d > > intersectionLineSegments;
isCellIntersected = RigCellGeometryTools::planeHexCellIntersection(hexCorners, fracturePlane, intersectionLineSegments);
RigCellGeometryTools::createPolygonFromLineSegments(intersectionLineSegments, polygons);
return isCellIntersected;
}

View File

@ -46,6 +46,11 @@ private:
void calculateStimPlanCellsMatrixTransmissibility(); void calculateStimPlanCellsMatrixTransmissibility();
std::vector<size_t> getPotentiallyFracturedCellsForPolygon(std::vector<cvf::Vec3d> polygon); std::vector<size_t> getPotentiallyFracturedCellsForPolygon(std::vector<cvf::Vec3d> polygon);
static bool planeCellIntersectionPolygons(cvf::Vec3d hexCorners[8],
cvf::Mat4f transformMatrixForPlane,
std::vector<std::vector<cvf::Vec3d> > & polygons);
private: private:
const RimEclipseCase* m_case; const RimEclipseCase* m_case;
double m_cDarcy; double m_cDarcy;

View File

@ -1,301 +0,0 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFractureTransCalc.h"
#include "RimFractureTemplate.h"
#include "RigEclipseCaseData.h"
#include "RimEclipseCase.h"
#include "RiaLogging.h"
#include "QString"
#include "RimReservoirCellResultsStorage.h"
#include "RigResultAccessorFactory.h"
#include "RimFracture.h"
#include "cvfGeometryTools.h"
#include "RigCellGeometryTools.h"
#include "RigActiveCellInfo.h"
#include "RimStimPlanFractureTemplate.h"
#include <QString>
#include "RimEllipseFractureTemplate.h"
#include "cafAppEnum.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "cvfMath.h"
#include "RiaEclipseUnitTools.h"
#include "RigFractureCell.h"
#include <cmath> //Used for log
#include "RiaApplication.h"
#include "RimEclipseView.h"
#include "RigFractureTransmissibilityEquations.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFractureTransCalc::RigFractureTransCalc(RimEclipseCase* caseToApply, RimFracture* fracture)
{
m_case = caseToApply;
m_fracture = fracture;
//Set correct unit system:
RigEclipseCaseData::UnitsType caseUnit = m_case->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC)
{
RiaLogging::debug(QString("Calculating transmissibilities in metric units"));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_METRIC;
}
else if (caseUnit == RigEclipseCaseData::UNITS_FIELD)
{
RiaLogging::debug(QString("Calculating transmissibilities in field units"));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_FIELD;
}
else
{
//TODO: How to handle lab units for eclipse case?
RiaLogging::error(QString("Unit system for case not supported for fracture export."));
RiaLogging::error(QString("Export will be in metric units, but results might be wrong."));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_METRIC;
}
}
//--------------------------------------------------------------------------------------------------
/// TODO: Document equation
//--------------------------------------------------------------------------------------------------
std::vector<RigFracturedEclipseCellExportData> RigFractureTransCalc::computeTransmissibilityFromPolygonWithInfiniteConductivityInFracture()
{
if (m_fracture->fractureTemplate()->conductivityType == RimFractureTemplate::FINITE_CONDUCTIVITY)
{
RiaLogging::warning(QString("Transimssibility for finite conductity in fracture not yet implemented."));
RiaLogging::warning(QString("Performing calculation for infinite conductivity instead."));
}
RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
double cDarchy = eclipseCaseData->darchysValue();
RifReaderInterface::PorosityModelResultType porosityModel = RifReaderInterface::MATRIX_RESULTS;
RimReservoirCellResultsStorage* gridCellResults = m_case->results(porosityModel);
size_t scalarSetIndex;
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "DX");
cvf::ref<RigResultAccessor> dataAccessObjectDx = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DX"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "DY");
cvf::ref<RigResultAccessor> dataAccessObjectDy = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DY"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "DZ");
cvf::ref<RigResultAccessor> dataAccessObjectDz = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DZ"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PERMX");
cvf::ref<RigResultAccessor> dataAccessObjectPermX = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMX"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PERMY");
cvf::ref<RigResultAccessor> dataAccessObjectPermY = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMY"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PERMZ");
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMZ"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "NTG");
cvf::ref<RigResultAccessor> dataAccessObjectNTG = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "NTG"); //assuming 0 time step and main grid (so grid index =0)
RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
std::vector<RigFracturedEclipseCellExportData> fracDataVec;
std::vector<size_t> fracCells = m_fracture->getPotentiallyFracturedCells(eclipseCaseData->mainGrid());
for (size_t fracCell : fracCells)
{
bool cellIsActive = activeCellInfo->isActive(fracCell);
double permX = dataAccessObjectPermX->cellScalarGlobIdx(fracCell);
double permY = dataAccessObjectPermY->cellScalarGlobIdx(fracCell);
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(fracCell);
double dx = dataAccessObjectDx->cellScalarGlobIdx(fracCell);
double dy = dataAccessObjectDy->cellScalarGlobIdx(fracCell);
double dz = dataAccessObjectDz->cellScalarGlobIdx(fracCell);
double NTG = dataAccessObjectNTG->cellScalarGlobIdx(fracCell);
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
std::array<cvf::Vec3d, 8> hexCorners;
mainGrid->cellCornerVertices(fracCell, hexCorners.data());
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
bool isPlanIntersected = planeCellIntersectionPolygons(hexCorners.data(), m_fracture->transformMatrix(), planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.size() == 0) continue;
cvf::Vec3d localX;
cvf::Vec3d localY;
cvf::Vec3d localZ;
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
cvf::Mat4f invertedTransMatrix = m_fracture->transformMatrix().getInverted();
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(static_cast<cvf::Mat4d>(invertedTransMatrix));
}
}
cvf::Vec3d localZinFracPlane;
localZinFracPlane = localZ;
localZinFracPlane.transformVector(static_cast<cvf::Mat4d>(invertedTransMatrix));
cvf::Vec3d directionOfLength = cvf::Vec3d::ZERO;
directionOfLength.cross(localZinFracPlane, cvf::Vec3d(0, 0, 1));
directionOfLength.normalize();
RigFracturedEclipseCellExportData fracData;
fracData.reservoirCellIndex = fracCell;
std::vector<cvf::Vec3f> fracPolygon = m_fracture->fractureTemplate()->fractureBorderPolygon(m_unitForCalculation);
std::vector<cvf::Vec3d> fracPolygonDouble;
for (auto v : fracPolygon) fracPolygonDouble.push_back(static_cast<cvf::Vec3d>(v));
std::vector<std::vector<cvf::Vec3d> > polygonsDescribingFractureInCell;
cvf::Vec3d areaVector;
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
{
std::vector<std::vector<cvf::Vec3d> >clippedPolygons = RigCellGeometryTools::intersectPolygons(planeCellPolygon, fracPolygonDouble);
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
{
polygonsDescribingFractureInCell.push_back(clippedPolygon);
}
}
double area;
std::vector<double> areaOfFractureParts;
double length;
std::vector<double> lengthXareaOfFractureParts;
double Ax = 0.0;
double Ay = 0.0;
double Az = 0.0;
for (std::vector<cvf::Vec3d> fracturePartPolygon : polygonsDescribingFractureInCell)
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
area = areaVector.length();
areaOfFractureParts.push_back(area);
length = RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, fracturePartPolygon);
lengthXareaOfFractureParts.push_back(length * area);
cvf::Plane fracturePlane;
cvf::Mat4f m = m_fracture->transformMatrix();
bool isCellIntersected = false;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m.translation()),
static_cast<cvf::Vec3d>(m.col(2)));
Ax += abs(area*(fracturePlane.normal().dot(localY)));
Ay += abs(area*(fracturePlane.normal().dot(localX)));
Az += abs(area*(fracturePlane.normal().dot(localZ)));
//TODO: resulting values have only been checked for vertical fracture...
}
double fractureArea = 0.0;
for (double area : areaOfFractureParts) fractureArea += area;
double totalAreaXLength = 0.0;
for (double lengtXarea : lengthXareaOfFractureParts) totalAreaXLength += lengtXarea;
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
double skinfactor = m_fracture->fractureTemplate()->skinFactor;
double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(permY, NTG, Ay, dx, skinfactor, fractureAreaWeightedlength, cDarchy);
double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(permX, NTG, Ax, dy, skinfactor, fractureAreaWeightedlength, cDarchy);
double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(permZ, 1.0, Az, dz, skinfactor, fractureAreaWeightedlength, cDarchy);
double transmissibility = sqrt(transmissibility_X * transmissibility_X
+ transmissibility_Y * transmissibility_Y
+ transmissibility_Z * transmissibility_Z);
fracData.transmissibility = transmissibility;
fracData.transmissibilities = cvf::Vec3d(transmissibility_X, transmissibility_Y, transmissibility_Z);
fracData.totalArea = fractureArea;
fracData.projectedAreas = cvf::Vec3d(Ax, Ay, Az);
fracData.fractureLenght = fractureAreaWeightedlength;
fracData.cellSizes = cvf::Vec3d(dx, dy, dz);
fracData.permeabilities = cvf::Vec3d(permX, permY, permZ);
fracData.NTG = NTG;
fracData.skinFactor = skinfactor;
fracData.cellIsActive = cellIsActive;
//Since we loop over all potentially fractured cells, we only keep FractureData for cells where fracture have an non-zero area.
if (fractureArea > 1e-5)
{
fracDataVec.push_back(fracData);
}
}
return fracDataVec;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFractureTransCalc::planeCellIntersectionPolygons(cvf::Vec3d hexCorners[8],
cvf::Mat4f transformMatrixForPlane,
std::vector<std::vector<cvf::Vec3d> > & polygons)
{
//Lage static func - input: transform-matrix for plan, hexcorners for celle
bool isCellIntersected = false;
cvf::Plane fracturePlane;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(transformMatrixForPlane.translation()),
static_cast<cvf::Vec3d>(transformMatrixForPlane.col(2)));
//Find line-segments where cell and fracture plane intersects
std::list<std::pair<cvf::Vec3d, cvf::Vec3d > > intersectionLineSegments;
isCellIntersected = RigCellGeometryTools::planeHexCellIntersection(hexCorners, fracturePlane, intersectionLineSegments);
RigCellGeometryTools::createPolygonFromLineSegments(intersectionLineSegments, polygons);
return isCellIntersected;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigFractureTransCalc::convertConductivtyValue(double Kw, RiaEclipseUnitTools::UnitSystem fromUnit, RiaEclipseUnitTools::UnitSystem toUnit)
{
if (fromUnit == toUnit) return Kw;
else if (fromUnit == RiaEclipseUnitTools::UNITS_METRIC && toUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
return RiaEclipseUnitTools::meterToFeet(Kw);
}
else if (fromUnit == RiaEclipseUnitTools::UNITS_METRIC && toUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
return RiaEclipseUnitTools::feetToMeter(Kw);
}
return cvf::UNDEFINED_DOUBLE;
}

View File

@ -1,96 +0,0 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RiaEclipseUnitTools.h"
#include "cafAppEnum.h"
#include "cvfBase.h"
#include "cvfMath.h"
#include "cvfVector3.h"
#include "cvfMatrix4.h"
#include "cvfPlane.h"
#include <vector>
#include <QString>
//==================================================================================================
///
//==================================================================================================
class RigFracturedEclipseCellExportData
{
public:
RigFracturedEclipseCellExportData() {};
// Compdat export data
size_t reservoirCellIndex;
double transmissibility; // Total cell to well transmissibility finally used in COMPDAT keyword
bool cellIsActive;
// General intermediate results
double NTG;
cvf::Vec3d permeabilities;
double skinFactor;
// Elipse fracture related values
cvf::Vec3d transmissibilities; //matrixToFractureTransmissibilitiesXYZ
double totalArea; // Elipse cell overlap area
double fractureLenght;
cvf::Vec3d projectedAreas;
cvf::Vec3d cellSizes;
//TODO: Used for upscaling - should be moved?
double upscaledStimPlanValueHA;
double upscaledStimPlanValueAH;
};
class RimFracture;
class RimEclipseCase;
class RigFractureCell;
class RimStimPlanFractureTemplate;
//==================================================================================================
///
//==================================================================================================
class RigFractureTransCalc
{
public:
explicit RigFractureTransCalc(RimEclipseCase* caseToApply, RimFracture* fracture);
// Calculations based on fracture polygon and eclipse grid cells
std::vector<RigFracturedEclipseCellExportData> computeTransmissibilityFromPolygonWithInfiniteConductivityInFracture();
static bool planeCellIntersectionPolygons(cvf::Vec3d hexCorners[8],
cvf::Mat4f transformMatrixForPlane,
std::vector<std::vector<cvf::Vec3d> > & polygons);
private:
static double convertConductivtyValue(double Kw, RiaEclipseUnitTools::UnitSystem fromUnit, RiaEclipseUnitTools::UnitSystem toUnit);
private:
RimEclipseCase* m_case;
RimFracture* m_fracture;
RiaEclipseUnitTools::UnitSystem m_unitForCalculation;
};

View File

@ -1,400 +0,0 @@
#include "RiaLogging.h"
#include "RigCellGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigFractureTransCalc.h"
#include "RigMainGrid.h"
#include "RigStimPlanUpscalingCalc.h"
#include "RimEclipseCase.h"
#include "RimStimPlanFractureTemplate.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanUpscalingCalc::RigStimPlanUpscalingCalc(RimEclipseCase* caseToApply, RimFracture* fracture)
{
m_case = caseToApply;
m_fracture = fracture;
//Set correct unit system:
RigEclipseCaseData::UnitsType caseUnit = m_case->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC)
{
RiaLogging::debug(QString("Calculating transmissibilities in metric units"));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_METRIC;
}
else if (caseUnit == RigEclipseCaseData::UNITS_FIELD)
{
RiaLogging::debug(QString("Calculating transmissibilities in field units"));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_FIELD;
}
else
{
//TODO: How to handle lab units for eclipse case?
RiaLogging::error(QString("Unit system for case not supported for fracture export."));
RiaLogging::error(QString("Export will be in metric units, but results might be wrong."));
m_unitForCalculation = RiaEclipseUnitTools::UNITS_METRIC;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<double, double> RigStimPlanUpscalingCalc::flowAcrossLayersUpscaling(QString resultName, QString resultUnit, size_t timeStepIndex, RiaEclipseUnitTools::UnitSystem unitSystem, size_t eclipseCellIndex)
{
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->fractureTemplate());
}
else return std::make_pair(cvf::UNDEFINED_DOUBLE, cvf::UNDEFINED_DOUBLE);
std::vector<RigFractureCell> stimPlanCells = fracTemplateStimPlan->fractureGrid()->fractureCells();
cvf::Vec3d localX, localY, localZ; //Not used in calculation here, but needed for function to find planCellPolygons
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
cvf::Vec3d hexCorners[8];
mainGrid->cellCornerVertices(eclipseCellIndex, hexCorners);
bool isPlanIntersected = RigFractureTransCalc::planeCellIntersectionPolygons(hexCorners, m_fracture->transformMatrix(), planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.size() == 0) return std::make_pair(cvf::UNDEFINED_DOUBLE, cvf::UNDEFINED_DOUBLE);
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon/stimPlan mesh already is located)
cvf::Mat4f invertedTransMatrix = m_fracture->transformMatrix().getInverted();
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(static_cast<cvf::Mat4d>(invertedTransMatrix));
}
}
cvf::Vec3d directionAcrossLayers;
cvf::Vec3d directionAlongLayers;
directionAcrossLayers = cvf::Vec3d(0.0, -1.0, 0.0);
directionAlongLayers = cvf::Vec3d(1.0, 0.0, 0.0);
std::vector<cvf::Vec3f> fracPolygon = m_fracture->fractureTemplate()->fractureBorderPolygon(unitSystem);
std::vector<std::vector<cvf::Vec3d> > polygonsDescribingFractureInCell;
std::vector<double> upscaledConductivitiesHA;
std::vector<double> upscaledConductivitiesAH;
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
{
double condHA = computeHAupscale(fracTemplateStimPlan, stimPlanCells, planeCellPolygon, directionAlongLayers, directionAcrossLayers);
upscaledConductivitiesHA.push_back(condHA);
double condAH = computeAHupscale(fracTemplateStimPlan, stimPlanCells, planeCellPolygon, directionAlongLayers, directionAcrossLayers);
upscaledConductivitiesAH.push_back(condAH);
}
return std::make_pair(arithmeticAverage(upscaledConductivitiesHA), arithmeticAverage(upscaledConductivitiesAH));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::computeHAupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigFractureCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers)
{
std::vector<double> DcolSum;
std::vector<double> lavgCol;
std::vector<double> CondHarmCol;
for (size_t j = 0; j < fracTemplateStimPlan->fractureGrid()->iCellCount(); j++)
{
std::vector<double> conductivitiesInStimPlanCells;
std::vector<double> lengthsLiOfStimPlanCol;
std::vector<double> heightsDiOfStimPlanCells;
std::vector<RigFractureCell*> stimPlanCellsCol = getColOfStimPlanCells(stimPlanCells, j);
for (RigFractureCell* stimPlanCell : stimPlanCellsCol)
{
if (stimPlanCell->getConductivtyValue() > 1e-7)
{
std::vector<std::vector<cvf::Vec3d> >clippedStimPlanPolygons = RigCellGeometryTools::intersectPolygons(stimPlanCell->getPolygon(), planeCellPolygon);
if (clippedStimPlanPolygons.size() > 0)
{
for (auto clippedStimPlanPolygon : clippedStimPlanPolygons)
{
conductivitiesInStimPlanCells.push_back(stimPlanCell->getConductivtyValue());
lengthsLiOfStimPlanCol.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAlongLayers, clippedStimPlanPolygon));
heightsDiOfStimPlanCells.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAcrossLayers, clippedStimPlanPolygon));
}
}
}
}
//Regne ut average
double sumDiDivCondLi = 0.0;
double sumDi = 0.0;
double sumLiDi = 0.0;
for (size_t i = 0; i < conductivitiesInStimPlanCells.size(); i++)
{
sumDiDivCondLi += heightsDiOfStimPlanCells[i] / (conductivitiesInStimPlanCells[i] * lengthsLiOfStimPlanCol[i]);
sumDi += heightsDiOfStimPlanCells[i];
sumLiDi += heightsDiOfStimPlanCells[i] * lengthsLiOfStimPlanCol[i];
}
if (sumDiDivCondLi != 0)
{
DcolSum.push_back(sumDi);
double lAvgValue = sumLiDi / sumDi;
lavgCol.push_back(lAvgValue);
double harmMeanForCol = (sumDi / lAvgValue) * (1 / sumDiDivCondLi);
CondHarmCol.push_back(harmMeanForCol);
}
}
//Do arithmetic upscaling based on harmonic upscaled values for coloums
double sumCondHLiDivDi = 0.0;
double sumLi = 0.0;
double sumDiLi = 0.0;
for (size_t i = 0; i < CondHarmCol.size(); i++)
{
sumLi += lavgCol[i];
sumDiLi += DcolSum[i] * lavgCol[i];
sumCondHLiDivDi += CondHarmCol[i] * lavgCol[i] / DcolSum[i];
}
double Davg = sumDiLi / sumLi;
double condHA = (Davg / sumLi) * sumCondHLiDivDi;
return condHA;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::computeAHupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigFractureCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers)
{
std::vector<double> DrowAvg;
std::vector<double> liRowSum;
std::vector<double> CondAritRow;
for (size_t j = 0; j < fracTemplateStimPlan->fractureGrid()->jCellCount(); j++)
{
std::vector<double> conductivitiesInStimPlanCells;
std::vector<double> lengthsLiOfStimPlanCol;
std::vector<double> heightsDiOfStimPlanCells;
std::vector<RigFractureCell*> stimPlanCellsCol = getRowOfStimPlanCells(stimPlanCells, j);
for (RigFractureCell* stimPlanCell : stimPlanCellsCol)
{
if (stimPlanCell->getConductivtyValue() > 1e-7)
{
std::vector<std::vector<cvf::Vec3d> >clippedStimPlanPolygons = RigCellGeometryTools::intersectPolygons(stimPlanCell->getPolygon(), planeCellPolygon);
if (clippedStimPlanPolygons.size() > 0)
{
for (auto clippedStimPlanPolygon : clippedStimPlanPolygons)
{
conductivitiesInStimPlanCells.push_back(stimPlanCell->getConductivtyValue());
lengthsLiOfStimPlanCol.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAlongLayers, clippedStimPlanPolygon));
heightsDiOfStimPlanCells.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAcrossLayers, clippedStimPlanPolygon));
}
}
}
}
//Calculate sums needed for (arithmetic) average for coloum
double sumCondLiDivDi = 0.0;
double sumDi = 0.0;
double sumLiDi = 0.0;
double sumLi = 0.0;
for (size_t i = 0; i < conductivitiesInStimPlanCells.size(); i++)
{
sumCondLiDivDi += (conductivitiesInStimPlanCells[i] * lengthsLiOfStimPlanCol[i]) / heightsDiOfStimPlanCells[i];
sumDi += heightsDiOfStimPlanCells[i];
sumLiDi += heightsDiOfStimPlanCells[i] * lengthsLiOfStimPlanCol[i];
sumLi += lengthsLiOfStimPlanCol[i];
}
if (sumCondLiDivDi != 0)
{
//Calculating art avg
double dAvg = sumLiDi / sumLi;
DrowAvg.push_back(dAvg);
liRowSum.push_back(sumLi);
CondAritRow.push_back(dAvg / sumLi * sumCondLiDivDi);
}
}
//Do harmonic upscaling based on arithmetric upscaled values for coloums
double sumDiDivCondALi = 0.0;
double sumDi = 0.0;
double sumDiLi = 0.0;
for (size_t i = 0; i < CondAritRow.size(); i++)
{
sumDi += DrowAvg[i];
sumDiLi += DrowAvg[i] * liRowSum[i];
sumDiDivCondALi += DrowAvg[i] / (CondAritRow[i] * liRowSum[i]);
}
double Lavg = sumDiLi / sumDi;
double condAH = (sumDi / Lavg) * (1 / sumDiDivCondALi);
return condAH;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::arithmeticAverage(std::vector<double> values)
{
if (values.size() == 0) return cvf::UNDEFINED_DOUBLE;
double sumValue = 0.0;
size_t numberOfValues = 0;
for (double value : values)
{
sumValue += value;
numberOfValues++;
}
return sumValue / numberOfValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigFracturedEclipseCellExportData> RigStimPlanUpscalingCalc::computeUpscaledPropertyFromStimPlan( QString resultName, QString resultUnit, size_t timeStepIndex)
{
std::vector<RigFracturedEclipseCellExportData> fracDataVec;
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->fractureTemplate());
}
else
{
return fracDataVec;
}
std::vector<std::vector<cvf::Vec3d> > stimPlanCellsAsPolygons;
std::vector<double> stimPlanParameterValues;
fracTemplateStimPlan->getStimPlanDataAsPolygonsAndValues(stimPlanCellsAsPolygons, stimPlanParameterValues, resultName, resultUnit, timeStepIndex);
//TODO: A lot of common code with function above... Can be cleaned up...?
std::vector<size_t> fracCells = m_fracture->getPotentiallyFracturedCells(m_case->eclipseCaseData()->mainGrid());
RifReaderInterface::PorosityModelResultType porosityModel = RifReaderInterface::MATRIX_RESULTS;
RimReservoirCellResultsStorage* gridCellResults = m_case->results(porosityModel);
RigActiveCellInfo* activeCellInfo = m_case->eclipseCaseData()->activeCellInfo(porosityModel);
for (size_t fracCell : fracCells)
{
//TODO: Lage ny classe for å holde upscaledData
RigFracturedEclipseCellExportData fracData;
fracData.reservoirCellIndex = fracCell;
std::pair<double, double> upscaledCondFlowAcrossLayers = flowAcrossLayersUpscaling(resultName, resultUnit, timeStepIndex, m_unitForCalculation, fracCell);
double upscaledStimPlanValueHA = upscaledCondFlowAcrossLayers.first;
double upscaledStimPlanValueAH = upscaledCondFlowAcrossLayers.second;
if (upscaledStimPlanValueHA != cvf::UNDEFINED_DOUBLE)
{
fracData.upscaledStimPlanValueHA = upscaledStimPlanValueHA;
fracData.upscaledStimPlanValueAH = upscaledStimPlanValueAH;
fracDataVec.push_back(fracData);
}
}
return fracDataVec;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigFractureCell*> RigStimPlanUpscalingCalc::getRowOfStimPlanCells(std::vector<RigFractureCell>& allStimPlanCells, size_t i)
{
std::vector<RigFractureCell*> stimPlanCellRow;
for (RigFractureCell stimPlanCell : allStimPlanCells)
{
if (stimPlanCell.getI() == i)
{
stimPlanCellRow.push_back(&stimPlanCell);
}
}
return stimPlanCellRow;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigFractureCell*> RigStimPlanUpscalingCalc::getColOfStimPlanCells(std::vector<RigFractureCell>& allStimPlanCells, size_t j)
{
std::vector<RigFractureCell*> stimPlanCellCol;
for (RigFractureCell stimPlanCell : allStimPlanCells)
{
if (stimPlanCell.getJ() == j)
{
stimPlanCellCol.push_back(&stimPlanCell);
}
}
return stimPlanCellCol;
}
#include "RigStimPlanFractureDefinition.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStimPlanFractureTemplate::getStimPlanDataAsPolygonsAndValues(std::vector<std::vector<cvf::Vec3d> > &cellsAsPolygons,
std::vector<double> &parameterValues,
const QString& resultName,
const QString& unitName,
size_t timeStepIndex)
{
std::vector< std::vector<double> > propertyValuesAtTimeStep = m_stimPlanFractureDefinitionData->getMirroredDataAtTimeIndex(resultName, unitName, timeStepIndex);
cellsAsPolygons.clear();
parameterValues.clear();
//TODO: Code partly copied from RivWellFracturePartMgr - can this be combined in some function?
std::vector<double> depthCoordsAtNodes = m_stimPlanFractureDefinitionData->adjustedDepthCoordsAroundWellPathPosition(m_wellPathDepthAtFracture());
std::vector<double> xCoordsAtNodes = m_stimPlanFractureDefinitionData->getNegAndPosXcoords();
//Cells are around nodes instead of between nodes
std::vector<double> xCoords;
for (int i = 0; i < xCoordsAtNodes.size() - 1; i++) xCoords.push_back((xCoordsAtNodes[i] + xCoordsAtNodes[i + 1]) / 2);
std::vector<double> depthCoords;
for (int i = 0; i < depthCoordsAtNodes.size() - 1; i++) depthCoords.push_back((depthCoordsAtNodes[i] + depthCoordsAtNodes[i + 1]) / 2);
for (int i = 0; i < xCoords.size() - 1; i++)
{
for (int j = 0; j < depthCoords.size() - 1; j++)
{
std::vector<cvf::Vec3d> cellAsPolygon;
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i + 1]), static_cast<float>(depthCoords[j + 1]), 0.0));
cellAsPolygon.push_back(cvf::Vec3d(static_cast<float>(xCoords[i]), static_cast<float>(depthCoords[j + 1]), 0.0));
cellsAsPolygons.push_back(cellAsPolygon);
//TODO: Values for both neg and pos x values...
parameterValues.push_back(propertyValuesAtTimeStep[j+1][i+1]); //TODO test that this value exsist...
}
}
}

View File

@ -1,29 +0,0 @@
#pragma once
#include "RimEclipseCase.h"
#include "RimFracture.h"
#include "RimStimPlanFractureTemplate.h"
class RigStimPlanUpscalingCalc
{
public:
explicit RigStimPlanUpscalingCalc(RimEclipseCase* caseToApply, RimFracture* fracture);
std::vector<RigFracturedEclipseCellExportData> computeUpscaledPropertyFromStimPlan(QString resultName, QString resultUnit, size_t timeStepIndex);
private:
std::pair<double, double> flowAcrossLayersUpscaling(QString resultName, QString resultUnit, size_t timeStepIndex, RiaEclipseUnitTools::UnitSystem unitSystem, size_t eclipseCellIndex);
double computeHAupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigFractureCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers);
double computeAHupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigFractureCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers);
static double arithmeticAverage(std::vector<double> values);
static std::vector<RigFractureCell*> getRowOfStimPlanCells(std::vector<RigFractureCell>& allStimPlanCells, size_t i);
static std::vector<RigFractureCell*> getColOfStimPlanCells(std::vector<RigFractureCell>& allStimPlanCells, size_t j);
private:
RimEclipseCase* m_case;
RimFracture* m_fracture;
RiaEclipseUnitTools::UnitSystem m_unitForCalculation;
};