mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-25 18:55:39 -06:00
parent
bcc00adea1
commit
3a81cea65d
@ -18,6 +18,9 @@
|
||||
|
||||
#include "RimSummaryRegressionAnalysisCurve.h"
|
||||
|
||||
#include "RiaQDateTimeTools.h"
|
||||
#include "RiaTimeTTools.h"
|
||||
|
||||
#include "cafPdmUiLineEditor.h"
|
||||
#include "cafPdmUiTextEditor.h"
|
||||
|
||||
@ -28,6 +31,8 @@
|
||||
#include "PolynominalRegression.hpp"
|
||||
#include "PowerFitRegression.hpp"
|
||||
|
||||
#include <QDateTime>
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
|
||||
@ -46,6 +51,16 @@ void caf::AppEnum<RimSummaryRegressionAnalysisCurve::RegressionType>::setUp()
|
||||
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LOGISTIC, "LOGISTIC", "Logistic" );
|
||||
setDefault( RimSummaryRegressionAnalysisCurve::RegressionType::LINEAR );
|
||||
}
|
||||
|
||||
template <>
|
||||
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::ForecastUnit>::setUp()
|
||||
{
|
||||
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::DAYS, "DAYS", "Days" );
|
||||
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::MONTHS, "MONTHS", "Months" );
|
||||
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS, "YEARS", "Years" );
|
||||
setDefault( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS );
|
||||
}
|
||||
|
||||
}; // namespace caf
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
@ -56,6 +71,9 @@ RimSummaryRegressionAnalysisCurve::RimSummaryRegressionAnalysisCurve()
|
||||
CAF_PDM_InitObject( "Regression Analysis Curve", ":/SummaryCurve16x16.png" );
|
||||
|
||||
CAF_PDM_InitFieldNoDefault( &m_regressionType, "RegressionType", "Type" );
|
||||
CAF_PDM_InitField( &m_forecastForward, "ForecastForward", 0, "Forward" );
|
||||
CAF_PDM_InitField( &m_forecastBackward, "ForecastBackward", 0, "Backward" );
|
||||
CAF_PDM_InitFieldNoDefault( &m_forecastUnit, "ForecastUnit", "Unit" );
|
||||
CAF_PDM_InitField( &m_polynominalDegree, "PolynominalDegree", 3, "Degree" );
|
||||
|
||||
CAF_PDM_InitFieldNoDefault( &m_expressionText, "ExpressionText", "Expression" );
|
||||
@ -128,87 +146,56 @@ std::tuple<std::vector<time_t>, std::vector<double>, QString>
|
||||
{
|
||||
if ( values.empty() || timeSteps.empty() ) return { timeSteps, values, "" };
|
||||
|
||||
auto convertToDouble = []( const std::vector<time_t>& timeSteps )
|
||||
{
|
||||
std::vector<double> doubleVector( timeSteps.size() );
|
||||
std::transform( timeSteps.begin(),
|
||||
timeSteps.end(),
|
||||
doubleVector.begin(),
|
||||
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
|
||||
return doubleVector;
|
||||
};
|
||||
|
||||
auto convertToTimeT = []( const std::vector<double>& timeSteps )
|
||||
{
|
||||
std::vector<time_t> tVector( timeSteps.size() );
|
||||
std::transform( timeSteps.begin(),
|
||||
timeSteps.end(),
|
||||
tVector.begin(),
|
||||
[]( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
|
||||
return tVector;
|
||||
};
|
||||
|
||||
auto filterValues = []( const std::vector<double>& timeSteps, const std::vector<double>& values )
|
||||
{
|
||||
std::vector<double> filteredTimeSteps;
|
||||
std::vector<double> filteredValues;
|
||||
for ( size_t i = 0; i < timeSteps.size(); i++ )
|
||||
{
|
||||
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
|
||||
{
|
||||
filteredTimeSteps.push_back( timeSteps[i] );
|
||||
filteredValues.push_back( values[i] );
|
||||
}
|
||||
}
|
||||
return std::make_pair( filteredTimeSteps, filteredValues );
|
||||
};
|
||||
|
||||
std::vector<double> timeStepsD = convertToDouble( timeSteps );
|
||||
|
||||
std::vector<time_t> outputTimeSteps = getOutputTimeSteps( timeSteps, m_forecastBackward(), m_forecastForward(), m_forecastUnit() );
|
||||
|
||||
std::vector<double> outputTimeStepsD = convertToDouble( outputTimeSteps );
|
||||
|
||||
if ( m_regressionType == RegressionType::LINEAR )
|
||||
{
|
||||
regression::LinearRegression linearRegression;
|
||||
linearRegression.fit( timeStepsD, values );
|
||||
std::vector<double> predictedValues = linearRegression.predict( timeStepsD );
|
||||
return { timeSteps, predictedValues, generateRegressionText( linearRegression ) };
|
||||
std::vector<double> predictedValues = linearRegression.predict( outputTimeStepsD );
|
||||
return { outputTimeSteps, predictedValues, generateRegressionText( linearRegression ) };
|
||||
}
|
||||
else if ( m_regressionType == RegressionType::POLYNOMINAL )
|
||||
{
|
||||
regression::PolynominalRegression polynominalRegression;
|
||||
polynominalRegression.fit( timeStepsD, values, m_polynominalDegree );
|
||||
std::vector<double> predictedValues = polynominalRegression.predict( timeStepsD );
|
||||
return { timeSteps, predictedValues, generateRegressionText( polynominalRegression ) };
|
||||
std::vector<double> predictedValues = polynominalRegression.predict( outputTimeStepsD );
|
||||
return { outputTimeSteps, predictedValues, generateRegressionText( polynominalRegression ) };
|
||||
}
|
||||
else if ( m_regressionType == RegressionType::POWER_FIT )
|
||||
{
|
||||
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
||||
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
||||
regression::PowerFitRegression powerFitRegression;
|
||||
powerFitRegression.fit( filteredTimeSteps, filteredValues );
|
||||
std::vector<double> predictedValues = powerFitRegression.predict( filteredTimeSteps );
|
||||
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( powerFitRegression ) };
|
||||
std::vector<double> predictedValues = powerFitRegression.predict( outputTimeStepsD );
|
||||
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( powerFitRegression ) };
|
||||
}
|
||||
else if ( m_regressionType == RegressionType::EXPONENTIAL )
|
||||
{
|
||||
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
||||
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
||||
regression::ExponentialRegression exponentialRegression;
|
||||
exponentialRegression.fit( filteredTimeSteps, filteredValues );
|
||||
std::vector<double> predictedValues = exponentialRegression.predict( filteredTimeSteps );
|
||||
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( exponentialRegression ) };
|
||||
std::vector<double> predictedValues = exponentialRegression.predict( outputTimeStepsD );
|
||||
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( exponentialRegression ) };
|
||||
}
|
||||
else if ( m_regressionType == RegressionType::LOGARITHMIC )
|
||||
{
|
||||
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
||||
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
||||
regression::LogarithmicRegression logarithmicRegression;
|
||||
logarithmicRegression.fit( filteredTimeSteps, filteredValues );
|
||||
std::vector<double> predictedValues = logarithmicRegression.predict( filteredTimeSteps );
|
||||
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( logarithmicRegression ) };
|
||||
std::vector<double> predictedValues = logarithmicRegression.predict( outputTimeStepsD );
|
||||
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logarithmicRegression ) };
|
||||
}
|
||||
else if ( m_regressionType == RegressionType::LOGISTIC )
|
||||
{
|
||||
regression::LogisticRegression logisticRegression;
|
||||
logisticRegression.fit( timeStepsD, values );
|
||||
std::vector<double> predictedValues = logisticRegression.predict( timeStepsD );
|
||||
return { timeSteps, predictedValues, generateRegressionText( logisticRegression ) };
|
||||
std::vector<double> predictedValues = logisticRegression.predict( outputTimeStepsD );
|
||||
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logisticRegression ) };
|
||||
}
|
||||
|
||||
return { timeSteps, values, "" };
|
||||
@ -231,6 +218,11 @@ void RimSummaryRegressionAnalysisCurve::defineUiOrdering( QString uiConfigName,
|
||||
|
||||
regressionCurveGroup->add( &m_expressionText );
|
||||
|
||||
caf::PdmUiGroup* forecastingGroup = uiOrdering.addNewGroup( "Forecasting" );
|
||||
forecastingGroup->add( &m_forecastForward );
|
||||
forecastingGroup->add( &m_forecastBackward );
|
||||
forecastingGroup->add( &m_forecastUnit );
|
||||
|
||||
RimSummaryCurve::defineUiOrdering( uiConfigName, uiOrdering );
|
||||
}
|
||||
|
||||
@ -242,7 +234,8 @@ void RimSummaryRegressionAnalysisCurve::fieldChangedByUi( const caf::PdmFieldHan
|
||||
const QVariant& newValue )
|
||||
{
|
||||
RimSummaryCurve::fieldChangedByUi( changedField, oldValue, newValue );
|
||||
if ( changedField == &m_regressionType || changedField == &m_polynominalDegree )
|
||||
if ( changedField == &m_regressionType || changedField == &m_polynominalDegree || changedField == &m_forecastBackward ||
|
||||
changedField == &m_forecastForward || changedField == &m_forecastUnit )
|
||||
{
|
||||
loadAndUpdateDataAndPlot();
|
||||
}
|
||||
@ -265,6 +258,14 @@ void RimSummaryRegressionAnalysisCurve::defineEditorAttribute( const caf::PdmFie
|
||||
lineEditorAttr->validator = new QIntValidator( 1, 50, nullptr );
|
||||
}
|
||||
}
|
||||
else if ( field == &m_forecastForward || field == &m_forecastBackward )
|
||||
{
|
||||
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
|
||||
{
|
||||
// Block negative forecast
|
||||
lineEditorAttr->validator = new QIntValidator( 0, 50, nullptr );
|
||||
}
|
||||
}
|
||||
else if ( field == &m_expressionText )
|
||||
{
|
||||
auto myAttr = dynamic_cast<caf::PdmUiTextEditorAttribute*>( attribute );
|
||||
@ -382,3 +383,96 @@ QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regress
|
||||
// TODO: Display more parameters here.
|
||||
return "";
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RimSummaryRegressionAnalysisCurve::appendTimeSteps( std::vector<time_t>& destinationTimeSteps, const std::set<QDateTime>& sourceTimeSteps )
|
||||
{
|
||||
for ( const QDateTime& t : sourceTimeSteps )
|
||||
destinationTimeSteps.push_back( RiaTimeTTools::fromQDateTime( t ) );
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
std::vector<time_t> RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( const std::vector<time_t>& timeSteps,
|
||||
int forecastBackward,
|
||||
int forecastForward,
|
||||
ForecastUnit forecastUnit )
|
||||
{
|
||||
auto getTimeSpan = []( int value, ForecastUnit unit )
|
||||
{
|
||||
if ( unit == ForecastUnit::YEARS ) return DateTimeSpan( value, 0, 0 );
|
||||
if ( unit == ForecastUnit::MONTHS ) return DateTimeSpan( 0, value, 0 );
|
||||
CAF_ASSERT( unit == ForecastUnit::DAYS );
|
||||
return DateTimeSpan( 0, 0, value );
|
||||
};
|
||||
|
||||
int numDates = 50;
|
||||
|
||||
std::vector<time_t> outputTimeSteps;
|
||||
if ( forecastBackward > 0 )
|
||||
{
|
||||
QDateTime firstTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.front() );
|
||||
QDateTime forecastStartTimeStep = RiaQDateTimeTools::subtractSpan( firstTimeStepInData, getTimeSpan( forecastBackward, forecastUnit ) );
|
||||
auto forecastTimeSteps =
|
||||
RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( forecastStartTimeStep, firstTimeStepInData, numDates );
|
||||
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
|
||||
}
|
||||
|
||||
outputTimeSteps.insert( std::end( outputTimeSteps ), std::begin( timeSteps ), std::end( timeSteps ) );
|
||||
|
||||
if ( forecastForward > 0 )
|
||||
{
|
||||
QDateTime lastTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.back() );
|
||||
QDateTime forecastEndTimeStep = RiaQDateTimeTools::addSpan( lastTimeStepInData, getTimeSpan( forecastForward, forecastUnit ) );
|
||||
auto forecastTimeSteps = RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( lastTimeStepInData, forecastEndTimeStep, numDates );
|
||||
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
|
||||
}
|
||||
|
||||
return outputTimeSteps;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
std::vector<double> RimSummaryRegressionAnalysisCurve::convertToDouble( const std::vector<time_t>& timeSteps )
|
||||
{
|
||||
std::vector<double> doubleVector( timeSteps.size() );
|
||||
std::transform( timeSteps.begin(),
|
||||
timeSteps.end(),
|
||||
doubleVector.begin(),
|
||||
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
|
||||
return doubleVector;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
std::vector<time_t> RimSummaryRegressionAnalysisCurve::convertToTimeT( const std::vector<double>& timeSteps )
|
||||
{
|
||||
std::vector<time_t> tVector( timeSteps.size() );
|
||||
std::transform( timeSteps.begin(), timeSteps.end(), tVector.begin(), []( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
|
||||
return tVector;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
std::pair<std::vector<double>, std::vector<double>>
|
||||
RimSummaryRegressionAnalysisCurve::getPositiveValues( const std::vector<double>& timeSteps, const std::vector<double>& values )
|
||||
{
|
||||
std::vector<double> filteredTimeSteps;
|
||||
std::vector<double> filteredValues;
|
||||
for ( size_t i = 0; i < timeSteps.size(); i++ )
|
||||
{
|
||||
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
|
||||
{
|
||||
filteredTimeSteps.push_back( timeSteps[i] );
|
||||
filteredValues.push_back( values[i] );
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_pair( filteredTimeSteps, filteredValues );
|
||||
}
|
||||
|
@ -57,6 +57,13 @@ public:
|
||||
LOGISTIC
|
||||
};
|
||||
|
||||
enum class ForecastUnit
|
||||
{
|
||||
DAYS,
|
||||
MONTHS,
|
||||
YEARS,
|
||||
};
|
||||
|
||||
RimSummaryRegressionAnalysisCurve();
|
||||
~RimSummaryRegressionAnalysisCurve() override;
|
||||
|
||||
@ -67,6 +74,8 @@ public:
|
||||
// X Axis functions
|
||||
std::vector<double> valuesX() const override;
|
||||
std::vector<time_t> timeStepsX() const override;
|
||||
static std::vector<time_t>
|
||||
getOutputTimeSteps( const std::vector<time_t>& timeSteps, int forecastBackward, int forecastForward, ForecastUnit forecastUnit );
|
||||
|
||||
private:
|
||||
void onLoadDataAndUpdate( bool updateParentPlot ) override;
|
||||
@ -82,6 +91,12 @@ private:
|
||||
std::tuple<std::vector<time_t>, std::vector<double>, QString> computeRegressionCurve( const std::vector<time_t>& timeSteps,
|
||||
const std::vector<double>& values ) const;
|
||||
|
||||
static std::vector<double> convertToDouble( const std::vector<time_t>& timeSteps );
|
||||
static std::vector<time_t> convertToTimeT( const std::vector<double>& timeSteps );
|
||||
|
||||
static std::pair<std::vector<double>, std::vector<double>> getPositiveValues( const std::vector<double>& timeSteps,
|
||||
const std::vector<double>& values );
|
||||
|
||||
static QString generateRegressionText( const regression::LinearRegression& reg );
|
||||
static QString generateRegressionText( const regression::PolynominalRegression& reg );
|
||||
static QString generateRegressionText( const regression::PowerFitRegression& reg );
|
||||
@ -91,9 +106,14 @@ private:
|
||||
|
||||
static QString formatDouble( double v );
|
||||
|
||||
static void appendTimeSteps( std::vector<time_t>& destinationTimeSteps, const std::set<QDateTime>& sourceTimeSteps );
|
||||
|
||||
caf::PdmField<caf::AppEnum<RegressionType>> m_regressionType;
|
||||
caf::PdmField<int> m_polynominalDegree;
|
||||
caf::PdmField<QString> m_expressionText;
|
||||
caf::PdmField<int> m_forecastForward;
|
||||
caf::PdmField<int> m_forecastBackward;
|
||||
caf::PdmField<caf::AppEnum<ForecastUnit>> m_forecastUnit;
|
||||
|
||||
std::vector<double> m_valuesX;
|
||||
std::vector<time_t> m_timeStepsX;
|
||||
|
@ -94,6 +94,7 @@ set(SOURCE_GROUP_SOURCE_FILES
|
||||
${CMAKE_CURRENT_LIST_DIR}/RigWellLogCurveData-Test.cpp
|
||||
${CMAKE_CURRENT_LIST_DIR}/RimWellLogCalculatedCurve-Test.cpp
|
||||
${CMAKE_CURRENT_LIST_DIR}/RifReaderFmuRft-Test.cpp
|
||||
${CMAKE_CURRENT_LIST_DIR}/RimSummaryRegressionAnalysisCurve-Test.cpp
|
||||
)
|
||||
|
||||
if(RESINSIGHT_ENABLE_GRPC)
|
||||
|
@ -0,0 +1,64 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) 2023- Equinor ASA
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "RiaQDateTimeTools.h"
|
||||
#include "RiaTimeTTools.h"
|
||||
#include "RimSummaryRegressionAnalysisCurve.h"
|
||||
|
||||
#include <QDateTime>
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
TEST( RimSummaryRegressionAnalysisCurve, getOutputTimeStepsNoForecast )
|
||||
{
|
||||
const std::vector<time_t> timeSteps = { 100000 };
|
||||
const std::vector<time_t> output =
|
||||
RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( timeSteps, 0, 0, RimSummaryRegressionAnalysisCurve::ForecastUnit::MONTHS );
|
||||
|
||||
ASSERT_EQ( timeSteps, output );
|
||||
}
|
||||
|
||||
TEST( RimSummaryRegressionAnalysisCurve, getOutputTimeStepsForwardForecast )
|
||||
{
|
||||
QDateTime dt = RiaQDateTimeTools::fromYears( 2020 );
|
||||
const std::vector<time_t> timeSteps = { RiaTimeTTools::fromQDateTime( dt ) };
|
||||
|
||||
int forecastBackward = 0;
|
||||
int forecastForward = 1;
|
||||
const std::vector<time_t> output =
|
||||
RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( timeSteps,
|
||||
forecastBackward,
|
||||
forecastForward,
|
||||
RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS );
|
||||
|
||||
ASSERT_EQ( output.size(), 51u );
|
||||
|
||||
// First output value should be the original value in time steps
|
||||
ASSERT_EQ( timeSteps[0], output[0] );
|
||||
|
||||
QDateTime oneYearLater = dt.addYears( 1 );
|
||||
for ( size_t i = 1; i < output.size(); i++ )
|
||||
{
|
||||
auto d = RiaQDateTimeTools::fromTime_t( output[i] );
|
||||
ASSERT_FALSE( RiaQDateTimeTools::lessThan( d, dt ) );
|
||||
ASSERT_TRUE( RiaQDateTimeTools::lessThan( d, oneYearLater ) );
|
||||
}
|
||||
//
|
||||
}
|
Loading…
Reference in New Issue
Block a user