mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-09 23:16:00 -06:00
Geomech Range filters working
The algorithm for the IJK assignment now works on the simple test example.
This commit is contained in:
parent
8a6e1ae65a
commit
51fd1b4de2
@ -97,7 +97,7 @@ void RigFemPart::calculateNodeToElmRefs()
|
||||
{
|
||||
m_nodeToElmRefs.resize(nodes().nodeIds.size());
|
||||
|
||||
for (size_t eIdx = 0; eIdx < m_elementId.size(); ++eIdx)
|
||||
for (int eIdx = 0; eIdx < static_cast<int>(m_elementId.size()); ++eIdx)
|
||||
{
|
||||
int elmNodeCount = RigFemTypes::elmentNodeCount(elementType(eIdx));
|
||||
const int* elmNodes = connectivities(eIdx);
|
||||
@ -111,7 +111,7 @@ void RigFemPart::calculateNodeToElmRefs()
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
const size_t* RigFemPart::elementsUsingNode(int nodeIndex)
|
||||
const int* RigFemPart::elementsUsingNode(int nodeIndex)
|
||||
{
|
||||
return &(m_nodeToElmRefs[nodeIndex][0]);
|
||||
}
|
||||
@ -167,7 +167,7 @@ void RigFemPart::calculateElmNeighbors()
|
||||
{
|
||||
int firstNodeIdxOfFace = elmNodes[localFaceIndices[0]];
|
||||
int candidateCount1 = this->numElementsUsingNode(firstNodeIdxOfFace);
|
||||
const size_t* candidates1 = this->elementsUsingNode(firstNodeIdxOfFace);
|
||||
const int* candidates1 = this->elementsUsingNode(firstNodeIdxOfFace);
|
||||
|
||||
if (candidateCount1)
|
||||
{
|
||||
@ -175,7 +175,7 @@ void RigFemPart::calculateElmNeighbors()
|
||||
|
||||
int thirdNodeIdxOfFace = elmNodes[localFaceIndices[3]];
|
||||
int candidateCount2 = this->numElementsUsingNode(thirdNodeIdxOfFace);
|
||||
const size_t* candidates2 = this->elementsUsingNode(thirdNodeIdxOfFace);
|
||||
const int* candidates2 = this->elementsUsingNode(thirdNodeIdxOfFace);
|
||||
|
||||
// The candidates are sorted from smallest to largest, so we do a linear search to find the
|
||||
// (two) common cells in the two arrays, and leaving this element out, we have one candidate left
|
||||
|
@ -62,12 +62,15 @@ public:
|
||||
const RigFemPartNodes& nodes() const {return m_nodes;}
|
||||
|
||||
void assertNodeToElmIndicesIsCalculated();
|
||||
const size_t* elementsUsingNode(int nodeIndex);
|
||||
const int* elementsUsingNode(int nodeIndex);
|
||||
int numElementsUsingNode(int nodeIndex);
|
||||
|
||||
void assertElmNeighborsIsCalculated();
|
||||
int elementNeighbor(int elementIndex, int faceIndex) const
|
||||
{ return m_elmNeighbors[elementIndex].indicesToNeighborElms[faceIndex]; }
|
||||
int neighborFace(int elementIndex, int faceIndex) const
|
||||
{ return m_elmNeighbors[elementIndex].faceInNeighborElm[faceIndex]; }
|
||||
|
||||
const std::vector<int>& possibleGridCornerElements() const { return m_possibleGridCornerElements; }
|
||||
|
||||
cvf::Vec3f faceNormal(int elmentIndex, int faceIndex);
|
||||
@ -87,7 +90,7 @@ private:
|
||||
cvf::ref<RigFemPartGrid> m_structGrid;
|
||||
|
||||
void calculateNodeToElmRefs();
|
||||
std::vector<std::vector<size_t> > m_nodeToElmRefs; // Needs a more memory friendly structure
|
||||
std::vector<std::vector<int> > m_nodeToElmRefs; // Needs a more memory friendly structure
|
||||
|
||||
void calculateElmNeighbors();
|
||||
struct Neighbors { int indicesToNeighborElms[6]; char faceInNeighborElm[6];};
|
||||
|
@ -43,83 +43,275 @@ RigFemPartGrid::~RigFemPartGrid()
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
cvf::StructGridInterface::FaceType RigFemPartGrid::findGridFace(cvf::Vec3d faceNormal )
|
||||
void RigFemPartGrid::generateStructGridData()
|
||||
{
|
||||
FaceType bestFace = cvf::StructGridInterface::POS_I;
|
||||
//[X] 1. Calculate neighbors for each element
|
||||
//[X] record the ones with 3 or fewer neighbors as possible grid corners
|
||||
//[X] 2. Loop over the possible corner cells,
|
||||
//[X] find the one that corresponds to IJK = 000
|
||||
//[X] by finding the one closest to origo
|
||||
//[X] 4. Assign IJK = 000 to that element
|
||||
//[X] Store IJK in elm idx array
|
||||
//[X] 5. Loop along POS I surfaces increment I for each element and assign IJK
|
||||
//[X] when at end, go to POS J neighbor, increment J, repeat above.
|
||||
//[X] etc for POS Z
|
||||
//[X] Find max IJK as you go,
|
||||
//[ ] also assert that there are no NEG I/NEG J/NEG Z neighbors when starting on a new row
|
||||
//[ ] (Need to find min, and offset IJK values if there exists such)
|
||||
//[ ] 6. If IJK to elm idx is needed, allocate "grid" with maxI,maxJ,maxZ values
|
||||
//[ ] Loop over elms, assign elmIdx to IJK address in grid
|
||||
|
||||
int gridCornerClosestToOrigo = findElmIdxOfGridCornerClosestToOrigo();
|
||||
|
||||
if (gridCornerClosestToOrigo == cvf::UNDEFINED_SIZE_T) return;
|
||||
|
||||
double maxComponent = fabs(faceNormal[0]);
|
||||
bestFace = (faceNormal[0] < 0) ? cvf::StructGridInterface::NEG_I: cvf::StructGridInterface::POS_I;
|
||||
// Find the IJK faces based on the corner cell
|
||||
|
||||
cvf::Vec3i ijkMainFaceIdx = cvf::Vec3i(-1,-1,-1);
|
||||
|
||||
double absComp = fabs(faceNormal[1]);
|
||||
if ( absComp > maxComponent)
|
||||
{
|
||||
maxComponent = absComp;
|
||||
bestFace = (faceNormal[1] < 0) ? cvf::StructGridInterface::NEG_J: cvf::StructGridInterface::POS_J;
|
||||
RigElementType eType = m_femPart->elementType(gridCornerClosestToOrigo);
|
||||
int faceCount = RigFemTypes::elmentFaceCount(eType);
|
||||
std::vector<cvf::Vec3f> normals(faceCount);
|
||||
for (int faceIdx = 0; faceIdx < faceCount; ++faceIdx)
|
||||
{
|
||||
normals[faceIdx] = m_femPart->faceNormal(gridCornerClosestToOrigo, faceIdx);
|
||||
}
|
||||
|
||||
// Record three independent main direction vectors for the element, and what face they are created from
|
||||
cvf::Vec3f mainElmDirections[3];
|
||||
int mainElmDirOriginFaces[3];
|
||||
if (eType == HEX8)
|
||||
{
|
||||
mainElmDirections[0] = normals[0] - normals[1]; // To get a better "average" direction vector
|
||||
mainElmDirections[1] = normals[2] - normals[3];
|
||||
mainElmDirections[2] = normals[4] - normals[5];
|
||||
mainElmDirOriginFaces[0] = 0;
|
||||
mainElmDirOriginFaces[1] = 2;
|
||||
mainElmDirOriginFaces[2] = 4;
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
CVF_ASSERT(false);
|
||||
}
|
||||
|
||||
// Match the element main directions with best XYZ match (IJK respectively)
|
||||
// Find the max component of a mainElmDirection.
|
||||
// Assign the index of that mainElmDirection to the mainElmDirectionIdxForIJK at the index of the max component.
|
||||
|
||||
int mainElmDirectionIdxForIJK[3] = { -1, -1, -1};
|
||||
for (int dIdx = 0; dIdx < 3; ++dIdx)
|
||||
{
|
||||
double maxAbsComp = 0;
|
||||
for (int cIdx = 2; cIdx >= 0 ; --cIdx)
|
||||
{
|
||||
float absComp = fabs(mainElmDirections[dIdx][cIdx]);
|
||||
if (absComp > maxAbsComp)
|
||||
{
|
||||
maxAbsComp = absComp;
|
||||
mainElmDirectionIdxForIJK[cIdx] = dIdx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// make sure all the main directions are used
|
||||
|
||||
bool mainDirsUsed[3] = { false, false, false};
|
||||
mainDirsUsed[mainElmDirectionIdxForIJK[0]] = true;
|
||||
mainDirsUsed[mainElmDirectionIdxForIJK[1]] = true;
|
||||
mainDirsUsed[mainElmDirectionIdxForIJK[2]] = true;
|
||||
|
||||
int unusedDir = -1;
|
||||
if (!mainDirsUsed[0]) unusedDir = 0;
|
||||
if (!mainDirsUsed[1]) unusedDir = 1;
|
||||
if (!mainDirsUsed[2]) unusedDir = 2;
|
||||
|
||||
if (unusedDir >= 0)
|
||||
{
|
||||
if (mainElmDirectionIdxForIJK[0] == mainElmDirectionIdxForIJK[1]) mainElmDirectionIdxForIJK[0] = unusedDir;
|
||||
else if (mainElmDirectionIdxForIJK[1] == mainElmDirectionIdxForIJK[2]) mainElmDirectionIdxForIJK[1] = unusedDir;
|
||||
else if (mainElmDirectionIdxForIJK[2] == mainElmDirectionIdxForIJK[0]) mainElmDirectionIdxForIJK[2] = unusedDir;
|
||||
}
|
||||
|
||||
// Assign the correct face based on the main direction
|
||||
|
||||
ijkMainFaceIdx[0] = (mainElmDirections[mainElmDirectionIdxForIJK[0]] * cvf::Vec3f::X_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]);
|
||||
ijkMainFaceIdx[1] = (mainElmDirections[mainElmDirectionIdxForIJK[1]] * cvf::Vec3f::Y_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]);
|
||||
ijkMainFaceIdx[2] = (mainElmDirections[mainElmDirectionIdxForIJK[2]] * -cvf::Vec3f::Z_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]);
|
||||
|
||||
}
|
||||
|
||||
absComp = fabs(faceNormal[2]);
|
||||
if ( absComp > maxComponent)
|
||||
// assign ijk to cells
|
||||
{
|
||||
bestFace = (faceNormal[2] < 0) ? cvf::StructGridInterface::NEG_K: cvf::StructGridInterface::POS_K;
|
||||
m_ijkPrElement.resize(m_femPart->elementCount(), cvf::Vec3i(-1,-1,-1));
|
||||
|
||||
int posIFaceIdx = ijkMainFaceIdx[0];
|
||||
int posJFaceIdx = ijkMainFaceIdx[1];
|
||||
int posKFaceIdx = ijkMainFaceIdx[2];
|
||||
|
||||
m_elmentIJKCounts = cvf::Vec3st(0, 0, 0);
|
||||
|
||||
int elmIdxInK = gridCornerClosestToOrigo;
|
||||
cvf::Vec3f posKNormal = m_femPart->faceNormal(elmIdxInK, posKFaceIdx);
|
||||
int kCoord = 0;
|
||||
while (true)
|
||||
{
|
||||
int elmIdxInJ = elmIdxInK;
|
||||
cvf::Vec3f startElmInKNormalJ = m_femPart->faceNormal(elmIdxInJ, posJFaceIdx);
|
||||
cvf::Vec3f startElmInKNormalI = m_femPart->faceNormal(elmIdxInJ, posIFaceIdx);
|
||||
|
||||
int jCoord = 0;
|
||||
while (true)
|
||||
{
|
||||
int elmIdxInI = elmIdxInJ;
|
||||
cvf::Vec3f startElmInJNormalI = m_femPart->faceNormal(elmIdxInI, posIFaceIdx);
|
||||
int iCoord = 0;
|
||||
while (true)
|
||||
{
|
||||
// Assign ijk coordinate
|
||||
m_ijkPrElement[elmIdxInI] = cvf::Vec3i(iCoord, jCoord, kCoord);
|
||||
|
||||
++iCoord;
|
||||
|
||||
// Find neighbor and exit if at end
|
||||
int neighborElmIdx = m_femPart->elementNeighbor(elmIdxInI, posIFaceIdx);
|
||||
if (neighborElmIdx == -1) break;
|
||||
|
||||
// Find the continuing face in the neighbor element (opposite of the neighbor face)
|
||||
int neighborNegFaceIdx = m_femPart->neighborFace(elmIdxInI, posIFaceIdx);
|
||||
|
||||
RigElementType eType = m_femPart->elementType(neighborElmIdx);
|
||||
posIFaceIdx = RigFemTypes::oppositeFace(eType, neighborNegFaceIdx);
|
||||
|
||||
// Step to neighbor
|
||||
elmIdxInI = neighborElmIdx;
|
||||
|
||||
}
|
||||
|
||||
// Scoped to show that nothing bleeds further to K-loop
|
||||
{
|
||||
if (iCoord > m_elmentIJKCounts[0]) m_elmentIJKCounts[0] = iCoord;
|
||||
|
||||
++jCoord;
|
||||
|
||||
// Find neighbor and exit if at end
|
||||
int neighborElmIdx = m_femPart->elementNeighbor(elmIdxInJ, posJFaceIdx);
|
||||
if (neighborElmIdx == -1) break;
|
||||
|
||||
// Find the continuing face in the neighbor element (opposite of the neighbor face)
|
||||
int neighborNegFaceIdx = m_femPart->neighborFace(elmIdxInJ, posJFaceIdx);
|
||||
|
||||
RigElementType eType = m_femPart->elementType(neighborElmIdx);
|
||||
posJFaceIdx = RigFemTypes::oppositeFace(eType, neighborNegFaceIdx);
|
||||
|
||||
// Now where is posIFace of the new J cell ?
|
||||
posIFaceIdx = perpendicularFaceInDirection(startElmInJNormalI, neighborNegFaceIdx, neighborElmIdx);
|
||||
|
||||
// Step to neighbor
|
||||
elmIdxInJ = neighborElmIdx;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
if (jCoord > m_elmentIJKCounts[1]) m_elmentIJKCounts[1] = jCoord;
|
||||
|
||||
++kCoord;
|
||||
|
||||
// Find neighbor and exit if at end
|
||||
int neighborElmIdx = m_femPart->elementNeighbor(elmIdxInK, posKFaceIdx);
|
||||
if (neighborElmIdx == -1) break;
|
||||
|
||||
// Find the continuing face in the neighbor element (opposite of the neighbor face)
|
||||
int neighborNegFaceIdx = m_femPart->neighborFace(elmIdxInK, posKFaceIdx);
|
||||
|
||||
RigElementType eType = m_femPart->elementType(neighborElmIdx);
|
||||
posKFaceIdx = RigFemTypes::oppositeFace(eType, neighborNegFaceIdx);
|
||||
|
||||
// Now where is posJFace of the new K cell ?
|
||||
posJFaceIdx = perpendicularFaceInDirection(startElmInKNormalJ, neighborNegFaceIdx, neighborElmIdx);
|
||||
posIFaceIdx = perpendicularFaceInDirection(startElmInKNormalI, neighborNegFaceIdx, neighborElmIdx);
|
||||
|
||||
// Step to neighbor
|
||||
elmIdxInK = neighborElmIdx;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (kCoord > m_elmentIJKCounts[2]) m_elmentIJKCounts[2] = kCoord;
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
int RigFemPartGrid::findElmIdxOfGridCornerClosestToOrigo()
|
||||
{
|
||||
const std::vector<int>& possibleGridCorners = m_femPart->possibleGridCornerElements();
|
||||
size_t possibleCornerCount = possibleGridCorners.size();
|
||||
const std::vector<cvf::Vec3f>& nodeCoordinates = m_femPart->nodes().coordinates;
|
||||
|
||||
int elmIdxToClosestCorner = -1;
|
||||
|
||||
// Find corner cell closest to origo
|
||||
double minSqDistance = HUGE_VAL;
|
||||
for (size_t pcIdx = 0; pcIdx < possibleCornerCount; ++pcIdx)
|
||||
{
|
||||
int elmIdx = possibleGridCorners[pcIdx];
|
||||
|
||||
const int* elmNodeIndices = m_femPart->connectivities(elmIdx);
|
||||
cvf::Vec3f firstNodePos = nodeCoordinates[elmNodeIndices[0]];
|
||||
float distSq = firstNodePos.lengthSquared();
|
||||
if (distSq < minSqDistance)
|
||||
{
|
||||
minSqDistance = distSq;
|
||||
elmIdxToClosestCorner = elmIdx;
|
||||
}
|
||||
}
|
||||
|
||||
return elmIdxToClosestCorner;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// Find the face that is not perpFaceIdx or its opposite, and has normal closest to direction
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
int RigFemPartGrid::perpendicularFaceInDirection(cvf::Vec3f direction, int perpFaceIdx, int elmIdx)
|
||||
{
|
||||
RigElementType eType = m_femPart->elementType(elmIdx);
|
||||
int faceCount = RigFemTypes::elmentFaceCount(eType);
|
||||
|
||||
int oppFace = RigFemTypes::oppositeFace(eType, perpFaceIdx);
|
||||
|
||||
double minDiffSqLength = HUGE_VAL;
|
||||
cvf::Vec3f faceNormal;
|
||||
direction.normalize();
|
||||
int bestFace = -1;
|
||||
for (int faceIdx = 0; faceIdx < faceCount; ++faceIdx)
|
||||
{
|
||||
if (faceIdx == perpFaceIdx || faceIdx == oppFace) continue;
|
||||
|
||||
faceNormal = m_femPart->faceNormal(elmIdx, faceIdx);
|
||||
faceNormal.normalize();
|
||||
float diffSqLength = (direction - faceNormal).lengthSquared();
|
||||
if (diffSqLength < minDiffSqLength)
|
||||
{
|
||||
bestFace = faceIdx;
|
||||
minDiffSqLength = diffSqLength;
|
||||
}
|
||||
}
|
||||
|
||||
return bestFace;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigFemPartGrid::generateStructGridData()
|
||||
{
|
||||
// 1. Calculate neighbors for each element
|
||||
// record the ones with 3 or fewer neighbors as possible grid corners
|
||||
// 2. Loop over the possible corner cells,
|
||||
// find the one that corresponds to IJK = 000
|
||||
// by Determining what surfs correspond to NEG IJK surfaces in that element,
|
||||
// and that none of those faces have a neighbor
|
||||
// 4. Assign IJK = 000 to that element
|
||||
// Store IJK in elm idx array
|
||||
// 5. Loop along POS I surfaces increment I for each element and assign IJK
|
||||
// when at end, go to POS J neighbor, increment J, repeat above.
|
||||
// etc for POS Z
|
||||
// Find max IJK as you go,
|
||||
// also assert that there are no NEG I/NEG J/NEG Z neighbors when starting on a new row
|
||||
// (Need to find min, and offset IJK values if there exists such)
|
||||
// 6. If IJK to elm idx is needed, allocate "grid" with maxI,maxJ,maxZ values
|
||||
// Loop over elms, assign elmIdx to IJK address in grid
|
||||
|
||||
const std::vector<int>& possibleGridCorners = m_femPart->possibleGridCornerElements();
|
||||
size_t possibleCornerCount = possibleGridCorners.size();
|
||||
const std::vector<cvf::Vec3f>& nodeCoordinates = m_femPart->nodes().coordinates;
|
||||
|
||||
// Find corner cell closest to origo
|
||||
size_t gridCornerClosestToOrigo = cvf::UNDEFINED_SIZE_T;
|
||||
double minDistance = HUGE_VAL;
|
||||
for (size_t pcIdx = 0; pcIdx < possibleCornerCount; ++pcIdx)
|
||||
{
|
||||
int elmIdx = possibleGridCorners[pcIdx];
|
||||
|
||||
const int* elmNodeIndices = m_femPart->connectivities(elmIdx);
|
||||
cvf::Vec3f firstNodePos = nodeCoordinates[elmNodeIndices[0]];
|
||||
float distSq = firstNodePos.lengthSquared();
|
||||
if (distSq < minDistance)
|
||||
{
|
||||
minDistance = distSq;
|
||||
gridCornerClosestToOrigo = pcIdx;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
size_t RigFemPartGrid::gridPointCountI() const
|
||||
{
|
||||
CVF_ASSERT(false);
|
||||
return cvf::UNDEFINED_SIZE_T;
|
||||
|
||||
return m_elmentIJKCounts[0] + 1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
@ -127,8 +319,7 @@ size_t RigFemPartGrid::gridPointCountI() const
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
size_t RigFemPartGrid::gridPointCountJ() const
|
||||
{
|
||||
CVF_ASSERT(false);
|
||||
return cvf::UNDEFINED_SIZE_T;
|
||||
return m_elmentIJKCounts[1] + 1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
@ -136,8 +327,7 @@ size_t RigFemPartGrid::gridPointCountJ() const
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
size_t RigFemPartGrid::gridPointCountK() const
|
||||
{
|
||||
CVF_ASSERT(false);
|
||||
return cvf::UNDEFINED_SIZE_T;
|
||||
return m_elmentIJKCounts[2] + 1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
@ -190,8 +380,11 @@ size_t RigFemPartGrid::cellIndexFromIJK(size_t i, size_t j, size_t k) const
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
bool RigFemPartGrid::ijkFromCellIndex(size_t cellIndex, size_t* i, size_t* j, size_t* k) const
|
||||
{
|
||||
CVF_ASSERT(false);
|
||||
return false;
|
||||
*i = m_ijkPrElement[cellIndex][0];
|
||||
*j = m_ijkPrElement[cellIndex][1];
|
||||
*k = m_ijkPrElement[cellIndex][2];
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
@ -246,5 +439,3 @@ cvf::Vec3d RigFemPartGrid::gridPointCoordinate(size_t i, size_t j, size_t k) con
|
||||
CVF_ASSERT(false);
|
||||
return cvf::Vec3d::ZERO;
|
||||
}
|
||||
|
||||
|
||||
|
@ -49,10 +49,16 @@ public:
|
||||
|
||||
|
||||
private:
|
||||
void generateStructGridData();
|
||||
static FaceType findGridFace(cvf::Vec3d faceNormal);
|
||||
void generateStructGridData();
|
||||
|
||||
int findElmIdxOfGridCornerClosestToOrigo();
|
||||
int perpendicularFaceInDirection(cvf::Vec3f direction, int perpFaceIdx, int elmIdx);
|
||||
|
||||
RigFemPart* m_femPart;
|
||||
|
||||
std::vector<cvf::Vec3i> m_ijkPrElement;
|
||||
cvf::Vec3st m_elmentIJKCounts;
|
||||
|
||||
RigFemPart* m_femPart;
|
||||
};
|
||||
|
||||
|
||||
|
@ -33,5 +33,5 @@ public:
|
||||
static int elmentNodeCount(RigElementType elmType);
|
||||
static int elmentFaceCount(RigElementType elmType);
|
||||
static const int* localElmNodeIndicesForFace(RigElementType elmType, int faceIdx, int* faceNodeCount);
|
||||
static int opositeFace(RigElementType elmType, int faceIdx);
|
||||
static int oppositeFace(RigElementType elmType, int faceIdx);
|
||||
};
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include "RimCellRangeFilterCollection.h"
|
||||
#include "RivGeoMechPartMgrCache.h"
|
||||
#include "RivGeoMechVizLogic.h"
|
||||
#include "RigFemPartGrid.h"
|
||||
|
||||
|
||||
|
||||
@ -493,6 +494,14 @@ RimCase* RimGeoMechView::ownerCase()
|
||||
return m_geomechCase;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RimGeoMechView::scheduleGeometryRegen(unsigned short geometryType)
|
||||
{
|
||||
m_vizLogic->scheduleGeometryRegen(geometryType);
|
||||
}
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
@ -506,8 +515,23 @@ void RivElmVisibilityCalculator::computeAllVisible(cvf::UByteArray* elmVisibilit
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RivElmVisibilityCalculator::computeRangeVisibility(cvf::UByteArray* elmVisibilities, const RigFemPart* femPart, const cvf::CellRangeFilter& rangeFilter)
|
||||
void RivElmVisibilityCalculator::computeRangeVisibility(cvf::UByteArray* elmVisibilities, RigFemPart* femPart,
|
||||
const cvf::CellRangeFilter& rangeFilter)
|
||||
{
|
||||
|
||||
elmVisibilities->resize(femPart->elementCount());
|
||||
|
||||
const RigFemPartGrid* grid = femPart->structGrid();
|
||||
|
||||
for (int elmIdx = 0; elmIdx < femPart->elementCount(); ++elmIdx)
|
||||
{
|
||||
size_t mainGridI;
|
||||
size_t mainGridJ;
|
||||
size_t mainGridK;
|
||||
|
||||
grid->ijkFromCellIndex(elmIdx, &mainGridI, &mainGridJ, &mainGridK);
|
||||
(*elmVisibilities)[elmIdx] = rangeFilter.isCellVisible(mainGridI, mainGridJ, mainGridK, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -71,7 +71,7 @@ public:
|
||||
virtual cvf::Transform* scaleTransform();
|
||||
|
||||
private:
|
||||
virtual void scheduleGeometryRegen(unsigned short geometryType){}
|
||||
virtual void scheduleGeometryRegen(unsigned short geometryType);
|
||||
virtual void createDisplayModel();
|
||||
virtual void updateDisplayModelVisibility();
|
||||
virtual void updateScaleTransform();
|
||||
@ -109,6 +109,6 @@ class RivElmVisibilityCalculator
|
||||
{
|
||||
public:
|
||||
static void computeAllVisible(cvf::UByteArray* elmVisibilities, const RigFemPart* femPart );
|
||||
static void computeRangeVisibility(cvf::UByteArray* elmVisibilities, const RigFemPart* femPart, const cvf::CellRangeFilter& rangeFilter);
|
||||
static void computeRangeVisibility(cvf::UByteArray* elmVisibilities, RigFemPart* femPart, const cvf::CellRangeFilter& rangeFilter);
|
||||
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user