#3927 Measurements : Add unit test for area computations

This commit is contained in:
Magne Sjaastad
2019-01-03 09:47:45 +01:00
parent ca39bd3407
commit 5bf13140e3

View File

@@ -20,15 +20,15 @@
#include "gtest/gtest.h"
#include "cvfLibCore.h"
#include "cvfLibViewing.h"
#include "cvfLibRender.h"
#include "cvfLibGeometry.h"
#include "cvfLibRender.h"
#include "cvfLibViewing.h"
#include "cvfArrayWrapperToEdit.h"
#include "cvfArrayWrapperConst.h"
#include "cvfArrayWrapperToEdit.h"
#include "cvfGeometryTools.h"
#include "cvfBoundingBoxTree.h"
#include "cvfGeometryTools.h"
#include <array>
@@ -86,10 +86,8 @@ void ControlVolume::calculateCubeFaceStatus(const cvf::Vec3dArray& nodeCoords, d
}
#endif
template<typename NodeArrayType, typename NodeType, typename IndexType>
NodeType quadNormal (ArrayWrapperConst<NodeArrayType, NodeType> nodeCoords,
const IndexType cubeFaceIndices[4] )
NodeType quadNormal(ArrayWrapperConst<NodeArrayType, NodeType> nodeCoords, const IndexType cubeFaceIndices[4])
{
return (nodeCoords[cubeFaceIndices[2]] - nodeCoords[cubeFaceIndices[0]]) ^
(nodeCoords[cubeFaceIndices[3]] - nodeCoords[cubeFaceIndices[1]]);
@@ -103,6 +101,7 @@ std::vector<cvf::Vec3d> createVertices()
std::vector<cvf::Vec3d> vxs;
vxs.resize(14, cvf::Vec3d::ZERO);
// clang-format off
vxs[ 0]= cvf::Vec3d( 0 , 0 , 0 );
vxs[ 1]= cvf::Vec3d( 1 , 0 , 0 );
vxs[ 2]= cvf::Vec3d( 1 , 1 , 0 );
@@ -117,6 +116,7 @@ std::vector<cvf::Vec3d> createVertices()
vxs[11]= cvf::Vec3d( 1.2 , 0.6 , 0.0 );
vxs[12]= cvf::Vec3d( 1.6 , 0.2 , 0.0 );
vxs[13]= cvf::Vec3d( 0.8 ,-0.6 , 0.0 );
// clang-format on
return vxs;
}
@@ -161,8 +161,7 @@ TEST(CellFaceIntersectionTst, Intersection1)
edgeIntersectionStorage.setVertexCount(nodes.size());
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
@@ -175,13 +174,11 @@ TEST(CellFaceIntersectionTst, Intersection1)
EXPECT_TRUE(isOk);
overlapPolygons.push_back(polygon);
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
@@ -194,13 +191,11 @@ TEST(CellFaceIntersectionTst, Intersection1)
EXPECT_TRUE(isOk);
overlapPolygons.push_back(polygon);
std::cout << polygon << std::endl;
}
{
std::vector<cvf::uint> polygon;
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
@@ -221,12 +216,7 @@ TEST(CellFaceIntersectionTst, Intersection1)
for (cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx)
{
GeometryTools::insertVertexInPolygon(
&basePolygon,
wrapArrayConst(&nodes),
vxIdx,
1e-6
);
GeometryTools::insertVertexInPolygon(&basePolygon, wrapArrayConst(&nodes), vxIdx, 1e-6);
}
EXPECT_EQ((size_t)8, basePolygon.size());
@@ -236,12 +226,7 @@ TEST(CellFaceIntersectionTst, Intersection1)
{
for (cvf::uint vxIdx = 0; vxIdx < nodes.size(); ++vxIdx)
{
GeometryTools::insertVertexInPolygon(
&overlapPolygons[pIdx],
wrapArrayConst(&nodes),
vxIdx,
1e-6
);
GeometryTools::insertVertexInPolygon(&overlapPolygons[pIdx], wrapArrayConst(&nodes), vxIdx, 1e-6);
}
if (pIdx == 0)
@@ -260,7 +245,6 @@ TEST(CellFaceIntersectionTst, Intersection1)
std::cout << "Op" << pIdx << ":" << overlapPolygons[pIdx] << std::endl;
}
Vec3d normal = quadNormal(wrapArrayConst(&nodes), faces[0].data());
std::vector<bool> faceOverlapPolygonWindingSameAsCubeFaceFlags;
faceOverlapPolygonWindingSameAsCubeFaceFlags.resize(overlapPolygons.size(), true);
@@ -275,15 +259,13 @@ TEST(CellFaceIntersectionTst, Intersection1)
overlapPolygonPtrs.push_back(&(overlapPolygons[pIdx]));
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon(
wrapArrayConst(&nodes),
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(&basePolygon),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles
);
&hasHoles);
EXPECT_EQ((size_t)4, freeFacePolygon.size());
EXPECT_FALSE(hasHoles);
@@ -300,24 +282,19 @@ TEST(CellFaceIntersectionTst, Intersection1)
overlapPolygonPtrs.push_back(&(overlapPolygons[pIdx]));
}
GeometryTools::calculatePartiallyFreeCubeFacePolygon(
wrapArrayConst(&nodes),
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(&basePolygon),
normal,
overlapPolygonPtrs,
faceOverlapPolygonWindingSameAsCubeFaceFlags,
&freeFacePolygon,
&hasHoles
);
&hasHoles);
EXPECT_EQ((size_t)9, freeFacePolygon.size());
EXPECT_FALSE(hasHoles);
std::cout << "FF2: " << freeFacePolygon << std::endl;
}
}
//--------------------------------------------------------------------------------------------------
@@ -326,12 +303,10 @@ TEST(CellFaceIntersectionTst, Intersection1)
TEST(CellFaceIntersectionTst, Intersection)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
@@ -352,9 +327,13 @@ TEST(CellFaceIntersectionTst, Intersection)
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, &edgeIntersectionStorage,
wrapArrayConst(&nodes), cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)4, polygon.size());
EXPECT_EQ((size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
@@ -371,28 +350,27 @@ TEST(CellFaceIntersectionTst, Intersection)
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, &edgeIntersectionStorage,
wrapArrayConst(&nodes), cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)8, polygon.size());
EXPECT_EQ((size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, FreeFacePolygon)
{
std::vector<cvf::Vec3d> additionalVertices;
cvf::Vec3dArray nodes;
std::vector<size_t> polygon;
cvf::Array<size_t> ids;
size_t cv1CubeFaceIndices[4] = {0, 1, 2, 3};
size_t cv2CubeFaceIndices[4] = {4, 5, 6, 7};
@@ -413,9 +391,13 @@ TEST(CellFaceIntersectionTst, FreeFacePolygon)
nodes[6] = cvf::Vec3d(1, 1, 0);
nodes[7] = cvf::Vec3d(0, 1, 0);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, &edgeIntersectionStorage,
wrapArrayConst(&nodes), cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
bool isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)4, polygon.size());
EXPECT_EQ((size_t)0, additionalVertices.size());
EXPECT_TRUE(isOk);
@@ -427,8 +409,7 @@ TEST(CellFaceIntersectionTst, FreeFacePolygon)
std::vector<size_t> partialFacePolygon;
bool hasHoles = false;
GeometryTools::calculatePartiallyFreeCubeFacePolygon(
wrapArrayConst(&nodes),
GeometryTools::calculatePartiallyFreeCubeFacePolygon(wrapArrayConst(&nodes),
wrapArrayConst(cv1CubeFaceIndices, 4),
Vec3d(0, 0, 1),
faceOverlapPolygons,
@@ -448,12 +429,105 @@ TEST(CellFaceIntersectionTst, FreeFacePolygon)
nodes[7] = cvf::Vec3d(-0.25, 0.5, 0);
polygon.clear();
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon, &additionalVertices, &edgeIntersectionStorage,
wrapArrayConst(&nodes), cv1CubeFaceIndices, cv2CubeFaceIndices, 1e-6);
isOk = GeometryTools::calculateOverlapPolygonOfTwoQuads(&polygon,
&additionalVertices,
&edgeIntersectionStorage,
wrapArrayConst(&nodes),
cv1CubeFaceIndices,
cv2CubeFaceIndices,
1e-6);
EXPECT_EQ((size_t)8, polygon.size());
EXPECT_EQ((size_t)8, additionalVertices.size());
EXPECT_TRUE(isOk);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(CellFaceIntersectionTst, PolygonAreaNormal3D)
{
// Test special cases with zero area
{
std::vector<cvf::Vec3d> vxs;
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
// Three points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-0.5, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
// four identical points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_TRUE(area == cvf::Vec3d::ZERO);
}
// Square of four points
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
vxs.push_back({0, 1, 0});
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-1.0, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
// Square of four points + one point in center of square
{
std::vector<cvf::Vec3d> vxs;
vxs.push_back({0, 0, 0});
vxs.push_back({0, 0, 1});
vxs.push_back({0, 1, 1});
vxs.push_back({0, 1, 0});
vxs.push_back({0, 0.5, 0.5}); // center of square
cvf::Vec3d area = GeometryTools::polygonAreaNormal3D(vxs);
EXPECT_DOUBLE_EQ(-0.75, area.x());
EXPECT_DOUBLE_EQ(0.0, area.y());
EXPECT_DOUBLE_EQ(0.0, area.z());
}
}