Merge pull request #5353 from OPM/allen-completenncs-2

Allen Results
This commit is contained in:
Magne Sjaastad 2020-01-19 16:08:50 +01:00 committed by GitHub
commit 63381756f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 810 additions and 226 deletions

View File

@ -18,6 +18,7 @@ ${CMAKE_CURRENT_LIST_DIR}/RiaFontCache.h
${CMAKE_CURRENT_LIST_DIR}/RiaEclipseFileNameTools.h
${CMAKE_CURRENT_LIST_DIR}/RiaFeatureCommandContext.h
${CMAKE_CURRENT_LIST_DIR}/RiaStringListSerializer.h
${CMAKE_CURRENT_LIST_DIR}/RiaNncDefines.h
)
set (SOURCE_GROUP_SOURCE_FILES
@ -40,6 +41,7 @@ ${CMAKE_CURRENT_LIST_DIR}/RiaFontCache.cpp
${CMAKE_CURRENT_LIST_DIR}/RiaEclipseFileNameTools.cpp
${CMAKE_CURRENT_LIST_DIR}/RiaFeatureCommandContext.cpp
${CMAKE_CURRENT_LIST_DIR}/RiaStringListSerializer.cpp
${CMAKE_CURRENT_LIST_DIR}/RiaNncDefines.cpp
)
list(APPEND CODE_HEADER_FILES

View File

@ -0,0 +1,75 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaNncDefines.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameFluxWat()
{
return "FLRWAT";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameFluxOil()
{
return "FLROIL";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameFluxGas()
{
return "FLRGAS";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameCombTrans()
{
return "TRAN";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameRiCombTrans()
{
return "riTRAN";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameRiCombTransByArea()
{
return "riTRANbyArea";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RiaDefines::propertyNameRiCombMult()
{
return "riMULT";
}

View File

@ -0,0 +1,32 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include <QString>
namespace RiaDefines
{
QString propertyNameFluxWat();
QString propertyNameFluxOil();
QString propertyNameFluxGas();
QString propertyNameCombTrans();
QString propertyNameRiCombTrans();
QString propertyNameRiCombTransByArea();
QString propertyNameRiCombMult();
}; // namespace RiaDefines

View File

@ -464,7 +464,7 @@ bool RifReaderEclipseOutput::open( const QString& fileName, RigEclipseCaseData*
{
auto subNncTask = nncProgress.task( "Processing connections", 8 );
eclipseCase->mainGrid()->nncData()->processConnections( *( eclipseCase->mainGrid() ) );
eclipseCase->mainGrid()->nncData()->processNativeConnections( *( eclipseCase->mainGrid() ) );
}
}
}
@ -728,24 +728,31 @@ void RifReaderEclipseOutput::transferStaticNNCData( const ecl_grid_type* mainEcl
if ( numNNC > 0 )
{
// Transform to our own data structures
std::vector<RigConnection> nncConnections;
std::vector<double> transmissibilityValuesTemp;
mainGrid->nncData()->connections().resize( numNNC );
std::vector<double>& transmissibilityValues = mainGrid->nncData()->makeStaticConnectionScalarResult(
RigNNCData::propertyNameCombTrans() );
const double* transValues = ecl_nnc_data_get_values( tran_data );
for ( int nIdx = 0; nIdx < numNNC; ++nIdx )
{
const ecl_nnc_pair_type* geometry_pair = ecl_nnc_geometry_iget( nnc_geo, nIdx );
RigGridBase* grid1 = mainGrid->gridByIndex( geometry_pair->grid_nr1 );
mainGrid->nncData()->connections()[nIdx].m_c1GlobIdx = grid1->reservoirCellIndex(
geometry_pair->global_index1 );
RigGridBase* grid2 = mainGrid->gridByIndex( geometry_pair->grid_nr2 );
mainGrid->nncData()->connections()[nIdx].m_c2GlobIdx = grid2->reservoirCellIndex(
geometry_pair->global_index2 );
transmissibilityValues[nIdx] = transValues[nIdx];
RigConnection nncConnection;
nncConnection.m_c1GlobIdx = grid1->reservoirCellIndex( geometry_pair->global_index1 );
nncConnection.m_c2GlobIdx = grid2->reservoirCellIndex( geometry_pair->global_index2 );
nncConnections.push_back( nncConnection );
transmissibilityValuesTemp.push_back( transValues[nIdx] );
}
mainGrid->nncData()->setConnections( nncConnections );
std::vector<double>& transmissibilityValues = mainGrid->nncData()->makeStaticConnectionScalarResult(
RiaDefines::propertyNameCombTrans() );
transmissibilityValues = transmissibilityValuesTemp;
}
ecl_nnc_data_free( tran_data );
@ -767,11 +774,11 @@ void RifReaderEclipseOutput::transferDynamicNNCData( const ecl_grid_type* mainEc
size_t timeStepCount = m_dynamicResultsAccess->timeStepCount();
std::vector<std::vector<double>>& waterFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RigNNCData::propertyNameFluxWat(), timeStepCount );
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxWat(), timeStepCount );
std::vector<std::vector<double>>& oilFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RigNNCData::propertyNameFluxOil(), timeStepCount );
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxOil(), timeStepCount );
std::vector<std::vector<double>>& gasFluxData =
mainGrid->nncData()->makeDynamicConnectionScalarResult( RigNNCData::propertyNameFluxGas(), timeStepCount );
mainGrid->nncData()->makeDynamicConnectionScalarResult( RiaDefines::propertyNameFluxGas(), timeStepCount );
for ( size_t timeStep = 0; timeStep < timeStepCount; ++timeStep )
{

View File

@ -72,13 +72,22 @@ RivFaultPartMgr::RivFaultPartMgr( const RigGridBase* grid,
m_nativeFaultGenerator = new RivFaultGeometryGenerator( grid, rimFault->faultGeometry(), true );
m_oppositeFaultGenerator = new RivFaultGeometryGenerator( grid, rimFault->faultGeometry(), false );
m_NNCGenerator = new RivNNCGeometryGenerator( grid->mainGrid()->nncData(),
m_nativeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_oppositeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_NNCGenerator = new RivNNCGeometryGenerator( false,
grid->mainGrid()->nncData(),
grid->mainGrid()->displayModelOffset(),
connIdxes.p() );
m_nativeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_oppositeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_NNCTextureCoords = new cvf::Vec2fArray;
m_allenNNCGenerator = new RivNNCGeometryGenerator( true,
grid->mainGrid()->nncData(),
grid->mainGrid()->displayModelOffset(),
connIdxes.p() );
m_allenNNCTextureCoords = new cvf::Vec2fArray;
}
//--------------------------------------------------------------------------------------------------
@ -89,6 +98,7 @@ void RivFaultPartMgr::setCellVisibility( cvf::UByteArray* cellVisibilities )
m_nativeFaultGenerator->setCellVisibility( cellVisibilities );
m_oppositeFaultGenerator->setCellVisibility( cellVisibilities );
m_NNCGenerator->setCellVisibility( cellVisibilities, m_grid.p() );
m_allenNNCGenerator->setCellVisibility( cellVisibilities, m_grid.p() );
generatePartGeometry();
}
@ -393,10 +403,44 @@ void RivFaultPartMgr::generatePartGeometry()
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Nnc );
cvf::ref<cvf::Effect> eff = new cvf::Effect;
part->setEffect( eff.p() );
m_NNCFaces = part;
}
}
{
cvf::ref<cvf::DrawableGeo> geo = m_allenNNCGenerator->generateSurface();
if ( geo.notNull() )
{
geo->computeNormals();
if ( useBufferObjects )
{
geo->setRenderMode( cvf::DrawableGeo::BUFFER_OBJECT );
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "Allen NNC in Fault. Grid " + cvf::String( static_cast<int>( m_grid->gridIndex() ) ) );
part->setDrawable( geo.p() );
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo( m_rimFault, m_grid->gridIndex() );
si->m_NNCIndices = m_allenNNCGenerator->triangleToNNCIndex().p();
part->setSourceInfo( si.p() );
part->updateBoundingBox();
part->setEnableMask( faultBit );
part->setPriority( RivPartPriority::PartType::Nnc );
cvf::ref<cvf::Effect> eff = new cvf::Effect;
part->setEffect( eff.p() );
m_allenNNCFaces = part;
}
}
createLabelWithAnchorLine( m_nativeFaultFaces.p() );
updatePartEffect();
@ -449,7 +493,9 @@ void RivFaultPartMgr::updatePartEffect()
m_nativeFaultFaces->setPriority( RivPartPriority::PartType::TransparentFault );
if ( m_oppositeFaultFaces.notNull() )
m_oppositeFaultFaces->setPriority( RivPartPriority::PartType::TransparentFault );
if ( m_NNCFaces.notNull() ) m_NNCFaces->setPriority( RivPartPriority::PartType::TransparentNnc );
if ( m_allenNNCFaces.notNull() ) m_allenNNCFaces->setPriority( RivPartPriority::PartType::TransparentNnc );
if ( m_nativeFaultGridLines.notNull() )
{
@ -643,7 +689,15 @@ void RivFaultPartMgr::appendMeshLinePartsToModel( cvf::ModelBasicList* model )
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNNCFacesToModel( cvf::ModelBasicList* model )
void RivFaultPartMgr::appendCompleteNNCFacesToModel( cvf::ModelBasicList* model )
{
if ( m_allenNNCFaces.notNull() ) model->addPart( m_allenNNCFaces.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNativeNNCFacesToModel( cvf::ModelBasicList* model )
{
if ( m_NNCFaces.notNull() ) model->addPart( m_NNCFaces.p() );
}
@ -730,6 +784,12 @@ void RivFaultPartMgr::updateNNCColors( size_t timeStepIndex, RimEclipseCellColor
resultType,
eclResAddr,
nativeTimeStepIndex );
m_allenNNCGenerator->textureCoordinates( m_allenNNCTextureCoords.p(),
mapper,
resultType,
eclResAddr,
nativeTimeStepIndex );
}
}
@ -750,10 +810,18 @@ void RivFaultPartMgr::updateNNCColors( size_t timeStepIndex, RimEclipseCellColor
nncEffect = nncEffgen.generateCachedEffect();
}
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_NNCFaces->drawable() );
if ( dg ) dg->setTextureCoordArray( m_NNCTextureCoords.p() );
}
{
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>( m_allenNNCFaces->drawable() );
if ( dg ) dg->setTextureCoordArray( m_allenNNCTextureCoords.p() );
}
m_NNCFaces->setEffect( nncEffect.p() );
m_allenNNCFaces->setEffect( nncEffect.p() );
}
else
{
@ -780,5 +848,6 @@ void RivFaultPartMgr::updateNNCColors( size_t timeStepIndex, RimEclipseCellColor
}
m_NNCFaces->setEffect( nncEffect.p() );
m_allenNNCFaces->setEffect( nncEffect.p() );
}
}

View File

@ -68,10 +68,12 @@ public:
void appendNativeFaultFacesToModel( cvf::ModelBasicList* model );
void appendOppositeFaultFacesToModel( cvf::ModelBasicList* model );
void appendNNCFacesToModel( cvf::ModelBasicList* model );
void appendLabelPartsToModel( cvf::ModelBasicList* model );
void appendMeshLinePartsToModel( cvf::ModelBasicList* model );
void appendNativeNNCFacesToModel( cvf::ModelBasicList* model );
void appendCompleteNNCFacesToModel( cvf::ModelBasicList* model );
private:
void generatePartGeometry();
void updatePartEffect();
@ -108,6 +110,10 @@ private:
cvf::ref<cvf::Part> m_NNCFaces;
cvf::ref<cvf::Vec2fArray> m_NNCTextureCoords;
cvf::ref<RivNNCGeometryGenerator> m_allenNNCGenerator;
cvf::ref<cvf::Part> m_allenNNCFaces;
cvf::ref<cvf::Vec2fArray> m_allenNNCTextureCoords;
cvf::ref<cvf::Part> m_faultLabelPart;
cvf::ref<cvf::Part> m_faultLabelLinePart;
};

View File

@ -31,10 +31,12 @@
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivNNCGeometryGenerator::RivNNCGeometryGenerator( const RigNNCData* nncData,
RivNNCGeometryGenerator::RivNNCGeometryGenerator( bool includeAllen,
const RigNNCData* nncData,
const cvf::Vec3d& offset,
const cvf::Array<size_t>* nncIndexes )
: m_nncData( nncData )
: m_includeAllenDiagramGeometry( includeAllen )
, m_nncData( nncData )
, m_nncIndexes( nncIndexes )
, m_offset( offset )
{
@ -86,6 +88,11 @@ void RivNNCGeometryGenerator::computeArrays()
{
size_t conIdx = m_nncIndexes.isNull() ? nIdx : ( *m_nncIndexes )[nIdx];
if ( !m_includeAllenDiagramGeometry && conIdx >= m_nncData->nativeConnectionCount() )
{
continue;
}
const RigConnection& conn = m_nncData->connections()[conIdx];
if ( conn.m_polygon.size() )
@ -177,7 +184,16 @@ void RivNNCGeometryGenerator::textureCoordinates( cvf::Vec2fArray*
#pragma omp parallel for
for ( int tIdx = 0; tIdx < static_cast<int>( m_triangleIndexToNNCIndex->size() ); tIdx++ )
{
double cellScalarValue = ( *nncResultVals )[( *m_triangleIndexToNNCIndex )[tIdx]];
double cellScalarValue = HUGE_VAL;
size_t resultIndex = ( *m_triangleIndexToNNCIndex )[tIdx];
// The nnc connections can have more connections than reported from Eclipse, clamp the result index to Eclipse Results
if ( resultIndex < nncResultVals->size() )
{
cellScalarValue = ( *nncResultVals )[resultIndex];
}
cvf::Vec2f texCoord = mapper->mapToTextureCoord( cellScalarValue );
if ( cellScalarValue == HUGE_VAL || cellScalarValue != cellScalarValue ) // a != a is true for NAN's
{

View File

@ -42,7 +42,11 @@ class RigEclipseResultAddress;
class RivNNCGeometryGenerator : public cvf::Object
{
public:
RivNNCGeometryGenerator( const RigNNCData* nncData, const cvf::Vec3d& offset, const cvf::Array<size_t>* nncIndexes );
RivNNCGeometryGenerator( bool includeAllen,
const RigNNCData* nncData,
const cvf::Vec3d& offset,
const cvf::Array<size_t>* nncIndexes );
~RivNNCGeometryGenerator() override;
void setCellVisibility( const cvf::UByteArray* cellVisibilities, const RigGridBase* grid );
@ -63,6 +67,8 @@ private:
void computeArrays();
private:
bool m_includeAllenDiagramGeometry;
// Input
cvf::cref<RigNNCData> m_nncData;
cvf::cref<cvf::Array<size_t>> m_nncIndexes;

View File

@ -155,6 +155,8 @@ void RivReservoirFaultsPartMgr::appendPartsToModel( cvf::ModelBasicList* model )
if ( faultCollection->showNNCs() )
{
bool showNncs = true;
bool showAllenNncGeometry = false;
if ( faultCollection->hideNncsWhenNoResultIsAvailable() )
{
RigEclipseResultAddress eclipseResultAddress;
@ -167,6 +169,11 @@ void RivReservoirFaultsPartMgr::appendPartsToModel( cvf::ModelBasicList* model )
eclipseResultAddress = cellResultColors->eclipseResultAddress();
}
if ( eclipseResultAddress.m_resultCatType == RiaDefines::ALLEN_DIAGRAMS )
{
showAllenNncGeometry = true;
}
RigMainGrid* mainGrid = m_reservoirView->mainGrid();
if ( !( mainGrid && mainGrid->nncData()->hasScalarValues( eclipseResultAddress ) ) )
{
@ -176,7 +183,14 @@ void RivReservoirFaultsPartMgr::appendPartsToModel( cvf::ModelBasicList* model )
if ( showNncs )
{
rivFaultPart->appendNNCFacesToModel( &parts );
if ( showAllenNncGeometry )
{
rivFaultPart->appendCompleteNNCFacesToModel( &parts );
}
else
{
rivFaultPart->appendNativeNNCFacesToModel( &parts );
}
}
}
}

View File

@ -828,7 +828,7 @@ bool RimEclipseCase::openReserviorCase()
RiaDefines::combinedTransmissibilityResultName() );
if ( results->hasResultEntry( combinedTransmissibilityResAddr ) )
{
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RigNNCData::propertyNameCombTrans(),
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RiaDefines::propertyNameCombTrans(),
combinedTransmissibilityResAddr );
}
@ -836,7 +836,7 @@ bool RimEclipseCase::openReserviorCase()
RiaDefines::combinedWaterFluxResultName() );
if ( results->hasResultEntry( combinedWaterFluxResAddr ) )
{
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RigNNCData::propertyNameFluxWat(),
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RiaDefines::propertyNameFluxWat(),
combinedWaterFluxResAddr );
}
@ -844,7 +844,7 @@ bool RimEclipseCase::openReserviorCase()
RiaDefines::combinedOilFluxResultName() );
if ( results->hasResultEntry( combinedOilFluxResAddr ) )
{
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RigNNCData::propertyNameFluxOil(),
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RiaDefines::propertyNameFluxOil(),
combinedOilFluxResAddr );
}
RigEclipseResultAddress combinedGasFluxResAddr( RiaDefines::DYNAMIC_NATIVE,
@ -852,7 +852,7 @@ bool RimEclipseCase::openReserviorCase()
if ( results->hasResultEntry( combinedGasFluxResAddr ) )
{
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RigNNCData::propertyNameFluxGas(),
eclipseCaseData()->mainGrid()->nncData()->setEclResultAddress( RiaDefines::propertyNameFluxGas(),
combinedGasFluxResAddr );
}
}

View File

@ -273,7 +273,7 @@ void RimFaultInViewCollection::syncronizeFaults()
this->noCommonAreaNnncCollection()->noCommonAreaNncs().deleteAllChildObjects();
RigMainGrid* mainGrid = parentView()->mainGrid();
std::vector<RigConnection>& nncConnections = mainGrid->nncData()->connections();
const std::vector<RigConnection>& nncConnections = mainGrid->nncData()->connections();
for ( size_t connIndex = 0; connIndex < nncConnections.size(); connIndex++ )
{
if ( !nncConnections[connIndex].hasCommonArea() )

View File

@ -75,6 +75,8 @@ ${CMAKE_CURRENT_LIST_DIR}/RigEclipseCrossPlotDataExtractor.h
${CMAKE_CURRENT_LIST_DIR}/RigEquil.h
${CMAKE_CURRENT_LIST_DIR}/RigWbsParameter.h
${CMAKE_CURRENT_LIST_DIR}/RigEclipseAllenFaultsStatCalc.h
${CMAKE_CURRENT_LIST_DIR}/RigCellFaceGeometryTools.h
${CMAKE_CURRENT_LIST_DIR}/RigNncConnection.h
)
@ -147,6 +149,8 @@ ${CMAKE_CURRENT_LIST_DIR}/RigEclipseCrossPlotDataExtractor.cpp
${CMAKE_CURRENT_LIST_DIR}/RigEquil.cpp
${CMAKE_CURRENT_LIST_DIR}/RigWbsParameter.cpp
${CMAKE_CURRENT_LIST_DIR}/RigEclipseAllenFaultsStatCalc.cpp
${CMAKE_CURRENT_LIST_DIR}/RigCellFaceGeometryTools.cpp
${CMAKE_CURRENT_LIST_DIR}/RigNncConnection.cpp
)
list(APPEND CODE_HEADER_FILES

View File

@ -2196,8 +2196,8 @@ void RigCaseCellResultsData::computeNncCombRiTrans()
std::vector<double>& permYResults = m_cellScalarResults[permYResultIdx][0];
std::vector<double>& permZResults = m_cellScalarResults[permZResultIdx][0];
std::vector<double>& riCombTransResults = m_ownerMainGrid->nncData()->makeStaticConnectionScalarResult(
RigNNCData::propertyNameRiCombTrans() );
m_ownerMainGrid->nncData()->setEclResultAddress( RigNNCData::propertyNameRiCombTrans(), riCombTransEclResAddr );
RiaDefines::propertyNameRiCombTrans() );
m_ownerMainGrid->nncData()->setEclResultAddress( RiaDefines::propertyNameRiCombTrans(), riCombTransEclResAddr );
std::vector<double>* ntgResults = nullptr;
if ( hasNTGResults )
@ -2239,7 +2239,7 @@ void RigCaseCellResultsData::computeNncCombRiTrans()
bool isFaceNormalsOutwards = m_ownerMainGrid->isFaceNormalsOutwards();
// NNC calculation
std::vector<RigConnection>& nncConnections = m_ownerMainGrid->nncData()->connections();
const std::vector<RigConnection>& nncConnections = m_ownerMainGrid->nncData()->connections();
for ( size_t connIdx = 0; connIdx < nncConnections.size(); connIdx++ )
{
size_t nativeResvCellIndex = nncConnections[connIdx].m_c1GlobIdx;
@ -2444,7 +2444,7 @@ void RigCaseCellResultsData::computeNncCombRiMULT()
if ( m_ownerMainGrid->nncData()->staticConnectionScalarResult( riCombMultEclResAddr ) ) return;
std::vector<double>& riMultResults = m_ownerMainGrid->nncData()->makeStaticConnectionScalarResult(
RigNNCData::propertyNameRiCombMult() );
RiaDefines::propertyNameRiCombMult() );
const std::vector<double>* riTransResults = m_ownerMainGrid->nncData()->staticConnectionScalarResult(
riCombTransEclResAddr );
@ -2452,7 +2452,7 @@ void RigCaseCellResultsData::computeNncCombRiMULT()
const std::vector<double>* transResults = m_ownerMainGrid->nncData()->staticConnectionScalarResult(
combTransEclResAddr );
m_ownerMainGrid->nncData()->setEclResultAddress( RigNNCData::propertyNameRiCombMult(), riCombMultEclResAddr );
m_ownerMainGrid->nncData()->setEclResultAddress( RiaDefines::propertyNameRiCombMult(), riCombMultEclResAddr );
for ( size_t nncConIdx = 0; nncConIdx < riMultResults.size(); ++nncConIdx )
{
@ -2585,9 +2585,9 @@ void RigCaseCellResultsData::computeNncCombRiTRANSbyArea()
if ( m_ownerMainGrid->nncData()->staticConnectionScalarResult( riCombTransByAreaEclResAddr ) ) return;
std::vector<double>& riAreaNormTransResults = m_ownerMainGrid->nncData()->makeStaticConnectionScalarResult(
RigNNCData::propertyNameRiCombTransByArea() );
RiaDefines::propertyNameRiCombTransByArea() );
m_ownerMainGrid->nncData()->setEclResultAddress( RigNNCData::propertyNameRiCombTransByArea(),
m_ownerMainGrid->nncData()->setEclResultAddress( RiaDefines::propertyNameRiCombTransByArea(),
riCombTransByAreaEclResAddr );
const std::vector<double>* transResults = m_ownerMainGrid->nncData()->staticConnectionScalarResult(

View File

@ -0,0 +1,341 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCellFaceGeometryTools.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RigNncConnection.h"
#include "cvfGeometryTools.h"
#include "cafAssert.h"
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::StructGridInterface::FaceType
RigCellFaceGeometryTools::calculateCellFaceOverlap( const RigCell& c1,
const RigCell& c2,
const RigMainGrid& mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections )
{
// Try to find the shared face
bool isPossibleNeighborInDirection[6] = {true, true, true, true, true, true};
if ( c1.hostGrid() == c2.hostGrid() )
{
char hasNeighbourInAnyDirection = 0;
size_t i1, j1, k1;
c1.hostGrid()->ijkFromCellIndex( c1.gridLocalCellIndex(), &i1, &j1, &k1 );
size_t i2, j2, k2;
c2.hostGrid()->ijkFromCellIndex( c2.gridLocalCellIndex(), &i2, &j2, &k2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ( ( i1 + 1 ) == i2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ( ( i2 + 1 ) == i1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ( ( j1 + 1 ) == j2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ( ( j2 + 1 ) == j1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ( ( k1 + 1 ) == k2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ( ( k2 + 1 ) == k1 );
hasNeighbourInAnyDirection = isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K];
// If cell 2 is not adjancent with respect to any of the six ijk directions,
// assume that we have no overlapping area.
if ( !hasNeighbourInAnyDirection )
{
// Add to search map
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) +
// " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
return cvf::StructGridInterface::NO_FACE;
}
}
for ( unsigned char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( !isPossibleNeighborInDirection[fIdx] )
{
continue;
}
// Calculate connection polygon
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> face1;
std::array<size_t, 4> face2;
c1.faceIndices( ( cvf::StructGridInterface::FaceType )( fIdx ), &face1 );
c2.faceIndices( cvf::StructGridInterface::oppositeFace( ( cvf::StructGridInterface::FaceType )( fIdx ) ), &face2 );
bool foundOverlap =
cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst( &mainGrid.nodes() ),
face1.data(),
face2.data(),
1e-6 );
if ( foundOverlap )
{
if ( connectionPolygon ) ( *connectionPolygon ) = polygon;
if ( connectionIntersections ) ( *connectionIntersections ) = intersections;
return ( cvf::StructGridInterface::FaceType )( fIdx );
}
}
return cvf::StructGridInterface::NO_FACE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigConnection> RigCellFaceGeometryTools::computeOtherNncs( const RigMainGrid* mainGrid,
const std::vector<RigConnection>& nativeConnections )
{
// Compute Non-Neighbor Connections (NNC) not reported by Eclipse. NNCs with zero transmissibility are not reported
// by Eclipse. Use faults as basis for subset of cells to find NNC connection for. The imported connections from
// Eclipse are located at the beginning of the connections vector.
std::vector<RigConnection> otherConnections;
class CellPair
{
public:
CellPair( size_t globalIdx1, size_t globalIdx2 )
{
if ( globalIdx1 < globalIdx2 )
{
m_globalCellIdx1 = globalIdx1;
m_globalCellIdx2 = globalIdx2;
}
else
{
m_globalCellIdx1 = globalIdx2;
m_globalCellIdx2 = globalIdx1;
}
}
bool operator<( const CellPair& other ) const
{
if ( m_globalCellIdx1 != other.m_globalCellIdx1 )
{
return m_globalCellIdx1 < other.m_globalCellIdx1;
}
return ( m_globalCellIdx2 < other.m_globalCellIdx2 );
}
private:
size_t m_globalCellIdx1;
size_t m_globalCellIdx2;
};
std::set<CellPair> nativeCellPairs;
for ( const auto& c : nativeConnections )
{
nativeCellPairs.emplace( CellPair( c.m_c1GlobIdx, c.m_c2GlobIdx ) );
}
if ( nativeConnections.size() != nativeCellPairs.size() )
{
QString message = QString( "Nnc connection imported from Eclipse are not unique\nNNC count : %1\nUnique : %2" )
.arg( nativeConnections.size() )
.arg( nativeCellPairs.size() );
qDebug() << message;
}
std::set<CellPair> otherCellPairs;
const cvf::Collection<RigFault>& faults = mainGrid->faults();
for ( size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++ )
{
const RigFault* fault = faults.at( faultIdx );
const std::vector<RigFault::FaultFace>& faultFaces = fault->faultFaces();
for ( const auto& f : faultFaces )
{
size_t sourceReservoirCellIndex = f.m_nativeReservoirCellIndex;
cvf::StructGridInterface::FaceType sourceCellFace = f.m_nativeFace;
const std::vector<cvf::Vec3d>& mainGridNodes = mainGrid->nodes();
cvf::BoundingBox bb;
std::array<size_t, 4> sourceFaceIndices;
mainGrid->globalCellArray()[sourceReservoirCellIndex].faceIndices( sourceCellFace, &sourceFaceIndices );
bb.add( mainGridNodes[sourceFaceIndices[0]] );
bb.add( mainGridNodes[sourceFaceIndices[1]] );
bb.add( mainGridNodes[sourceFaceIndices[2]] );
bb.add( mainGridNodes[sourceFaceIndices[3]] );
std::vector<size_t> closeCells;
mainGrid->findIntersectingCells( bb, &closeCells );
cvf::StructGridInterface::FaceType candidateFace = cvf::StructGridInterface::oppositeFace( sourceCellFace );
size_t neighborCellIndex = std::numeric_limits<size_t>::max();
size_t ni = std::numeric_limits<size_t>::max();
size_t nj = std::numeric_limits<size_t>::max();
size_t nk = std::numeric_limits<size_t>::max();
{
size_t i;
size_t j;
size_t k;
mainGrid->ijkFromCellIndex( sourceReservoirCellIndex, &i, &j, &k );
mainGrid->neighborIJKAtCellFace( i, j, k, sourceCellFace, &ni, &nj, &nk );
if ( mainGrid->isCellValid( ni, nj, nk ) )
{
neighborCellIndex = mainGrid->cellIndexFromIJK( ni, nj, nk );
}
}
for ( size_t candidateCellIndex : closeCells )
{
if ( candidateCellIndex == sourceReservoirCellIndex )
{
// Exclude cellIndex for source cell
continue;
}
if ( candidateCellIndex == neighborCellIndex )
{
// Exclude direct neighbor
continue;
}
if ( neighborCellIndex != std::numeric_limits<size_t>::max() )
{
// Find target IJK index based on source cell and cell face
// Exclude cells not matching destination target index
size_t ci = std::numeric_limits<size_t>::max();
size_t cj = std::numeric_limits<size_t>::max();
size_t ck = std::numeric_limits<size_t>::max();
mainGrid->ijkFromCellIndex( candidateCellIndex, &ci, &cj, &ck );
if ( sourceCellFace == cvf::StructGridInterface::POS_I ||
sourceCellFace == cvf::StructGridInterface::NEG_I )
{
if ( ni != ci )
{
continue;
}
}
else if ( sourceCellFace == cvf::StructGridInterface::POS_J ||
sourceCellFace == cvf::StructGridInterface::NEG_J )
{
if ( nj != cj )
{
continue;
}
}
else if ( sourceCellFace == cvf::StructGridInterface::POS_K ||
sourceCellFace == cvf::StructGridInterface::NEG_K )
{
if ( nk != ck )
{
continue;
}
}
}
CellPair candidate( sourceReservoirCellIndex, candidateCellIndex );
if ( nativeCellPairs.count( candidate ) > 0 )
{
continue;
}
if ( otherCellPairs.count( candidate ) > 0 )
{
continue;
}
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> candidateFaceIndices;
mainGrid->globalCellArray()[candidateCellIndex].faceIndices( candidateFace, &candidateFaceIndices );
bool foundOverlap =
cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst( &mainGridNodes ),
sourceFaceIndices.data(),
candidateFaceIndices.data(),
1e-6 );
if ( foundOverlap )
{
otherCellPairs.emplace( candidate );
RigConnection conn;
conn.m_c1GlobIdx = sourceReservoirCellIndex;
conn.m_c1Face = sourceCellFace;
conn.m_c2GlobIdx = candidateCellIndex;
conn.m_polygon = RigCellFaceGeometryTools::extractPolygon( mainGridNodes, polygon, intersections );
otherConnections.emplace_back( conn );
}
}
}
}
return otherConnections;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigCellFaceGeometryTools::extractPolygon( const std::vector<cvf::Vec3d>& nativeNodes,
const std::vector<size_t>& connectionPolygon,
const std::vector<cvf::Vec3d>& connectionIntersections )
{
std::vector<cvf::Vec3d> allPolygonNodes;
for ( size_t polygonIndex : connectionPolygon )
{
if ( polygonIndex < nativeNodes.size() )
allPolygonNodes.push_back( nativeNodes[polygonIndex] );
else
allPolygonNodes.push_back( connectionIntersections[polygonIndex - nativeNodes.size()] );
}
return allPolygonNodes;
}

View File

@ -0,0 +1,49 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "cvfCollection.h"
#include "cvfStructGrid.h"
#include "cvfVector3.h"
#include <vector>
class RigCell;
class RigMainGrid;
class RigConnection;
//==================================================================================================
///
//==================================================================================================
class RigCellFaceGeometryTools
{
public:
static cvf::StructGridInterface::FaceType calculateCellFaceOverlap( const RigCell& c1,
const RigCell& c2,
const RigMainGrid& mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections );
static std::vector<RigConnection> computeOtherNncs( const RigMainGrid* mainGrid,
const std::vector<RigConnection>& nativeConnections );
static std::vector<cvf::Vec3d> extractPolygon( const std::vector<cvf::Vec3d>& nativeNodes,
const std::vector<size_t>& connectionPolygon,
const std::vector<cvf::Vec3d>& connectionIntersections );
};

View File

@ -556,6 +556,8 @@ void RigMainGrid::calculateFaults( const RigActiveCellInfo* activeCellInfo )
}
}
this->nncData()->computeCompleteSetOfNncs( this );
distributeNNCsToFaults();
}

View File

@ -18,8 +18,11 @@
/////////////////////////////////////////////////////////////////////////////////
#include "RigNNCData.h"
#include "RigCellFaceGeometryTools.h"
#include "RigEclipseResultAddress.h"
#include "RigMainGrid.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
@ -30,7 +33,7 @@ RigNNCData::RigNNCData() {}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::processConnections( const RigMainGrid& mainGrid )
void RigNNCData::processNativeConnections( const RigMainGrid& mainGrid )
{
// cvf::Trace::show("NNC: Total number: " + cvf::String((int)m_connections.size()));
@ -43,21 +46,21 @@ void RigNNCData::processConnections( const RigMainGrid& mainGrid )
std::vector<cvf::Vec3d> connectionIntersections;
cvf::StructGridInterface::FaceType connectionFace = cvf::StructGridInterface::NO_FACE;
connectionFace = calculateCellFaceOverlap( c1, c2, mainGrid, &connectionPolygon, &connectionIntersections );
connectionFace = RigCellFaceGeometryTools::calculateCellFaceOverlap( c1,
c2,
mainGrid,
&connectionPolygon,
&connectionIntersections );
if ( connectionFace != cvf::StructGridInterface::NO_FACE )
{
// Found an overlap polygon. Store data about connection
m_connections[cnIdx].m_c1Face = connectionFace;
for ( size_t pIdx = 0; pIdx < connectionPolygon.size(); ++pIdx )
{
if ( connectionPolygon[pIdx] < mainGrid.nodes().size() )
m_connections[cnIdx].m_polygon.push_back( mainGrid.nodes()[connectionPolygon[pIdx]] );
else
m_connections[cnIdx].m_polygon.push_back(
connectionIntersections[connectionPolygon[pIdx] - mainGrid.nodes().size()] );
}
m_connections[cnIdx].m_polygon = RigCellFaceGeometryTools::extractPolygon( mainGrid.nodes(),
connectionPolygon,
connectionIntersections );
// Add to search map, possibly not needed
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][connectionFace].push_back(cnIdx);
@ -74,109 +77,37 @@ void RigNNCData::processConnections( const RigMainGrid& mainGrid )
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::StructGridInterface::FaceType RigNNCData::calculateCellFaceOverlap( const RigCell& c1,
const RigCell& c2,
const RigMainGrid& mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections )
void RigNNCData::computeCompleteSetOfNncs( const RigMainGrid* mainGrid )
{
// Try to find the shared face
m_nativeConnectionCount = m_connections.size();
bool isPossibleNeighborInDirection[6] = {true, true, true, true, true, true};
std::vector<RigConnection> otherConnections = RigCellFaceGeometryTools::computeOtherNncs( mainGrid, m_connections );
if ( c1.hostGrid() == c2.hostGrid() )
{
char hasNeighbourInAnyDirection = 0;
m_connections.insert( m_connections.end(), otherConnections.begin(), otherConnections.end() );
}
size_t i1, j1, k1;
c1.hostGrid()->ijkFromCellIndex( c1.gridLocalCellIndex(), &i1, &j1, &k1 );
size_t i2, j2, k2;
c2.hostGrid()->ijkFromCellIndex( c2.gridLocalCellIndex(), &i2, &j2, &k2 );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNNCData::setConnections( std::vector<RigConnection>& connections )
{
m_connections = connections;
}
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] = ( ( i1 + 1 ) == i2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] = ( ( i2 + 1 ) == i1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] = ( ( j1 + 1 ) == j2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] = ( ( j2 + 1 ) == j1 );
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] = ( ( k1 + 1 ) == k2 );
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K] = ( ( k2 + 1 ) == k1 );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigNNCData::nativeConnectionCount() const
{
return m_nativeConnectionCount;
}
hasNeighbourInAnyDirection = isPossibleNeighborInDirection[cvf::StructGridInterface::POS_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_I] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_J] +
isPossibleNeighborInDirection[cvf::StructGridInterface::POS_K] +
isPossibleNeighborInDirection[cvf::StructGridInterface::NEG_K];
// If cell 2 is not adjancent with respect to any of the six ijk directions,
// assume that we have no overlapping area.
if ( !hasNeighbourInAnyDirection )
{
// Add to search map
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c1GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// m_cellIdxToFaceToConnectionIdxMap[m_connections[cnIdx].m_c2GlobIdx][cvf::StructGridInterface::NO_FACE].push_back(cnIdx);
// cvf::Trace::show("NNC: No direct neighbors : C1: " + cvf::String((int)m_connections[cnIdx].m_c1GlobIdx) +
// " C2: " + cvf::String((int)m_connections[cnIdx].m_c2GlobIdx));
return cvf::StructGridInterface::NO_FACE;
}
}
#if 0
// Possibly do some testing to avoid unneccesary overlap calculations
cvf::Vec3d normal;
for ( char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( isPossibleNeighborInDirection[fIdx] )
{
cvf::Vec3d fc1 = c1.faceCenter((cvf::StructGridInterface::FaceType)(fIdx));
cvf::Vec3d fc2 = c2.faceCenter(cvf::StructGridInterface::oppositeFace((cvf::StructGridInterface::FaceType)(fIdx)));
cvf::Vec3d fc1ToFc2 = fc2 - fc1;
normal = c1.faceNormalWithAreaLenght((cvf::StructGridInterface::FaceType)(fIdx));
normal.normalize();
// Check that face centers are approx in the face plane
if ( normal.dot(fc1ToFc2) < 0.01*fc1ToFc2.length() )
{
}
}
}
#endif
for ( unsigned char fIdx = 0; fIdx < 6; ++fIdx )
{
if ( !isPossibleNeighborInDirection[fIdx] )
{
continue;
}
// Calculate connection polygon
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
std::array<size_t, 4> face1;
std::array<size_t, 4> face2;
c1.faceIndices( ( cvf::StructGridInterface::FaceType )( fIdx ), &face1 );
c2.faceIndices( cvf::StructGridInterface::oppositeFace( ( cvf::StructGridInterface::FaceType )( fIdx ) ), &face2 );
bool foundOverlap =
cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads( &polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)nullptr,
cvf::wrapArrayConst( &mainGrid.nodes() ),
face1.data(),
face2.data(),
1e-6 );
if ( foundOverlap )
{
if ( connectionPolygon ) ( *connectionPolygon ) = polygon;
if ( connectionIntersections ) ( *connectionIntersections ) = intersections;
return ( cvf::StructGridInterface::FaceType )( fIdx );
}
}
return cvf::StructGridInterface::NO_FACE;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<RigConnection>& RigNNCData::connections() const
{
return m_connections;
}
//--------------------------------------------------------------------------------------------------
@ -529,10 +460,10 @@ const QString RigNNCData::getNNCDataTypeFromScalarResultIndex( const RigEclipseR
//--------------------------------------------------------------------------------------------------
bool RigNNCData::isNative( QString nncDataType ) const
{
if ( nncDataType == RigNNCData::propertyNameCombTrans() || nncDataType == RigNNCData::propertyNameFluxGas() ||
nncDataType == RigNNCData::propertyNameFluxOil() || nncDataType == RigNNCData::propertyNameFluxWat() ||
nncDataType == RigNNCData::propertyNameRiCombMult() || nncDataType == RigNNCData::propertyNameRiCombTrans() ||
nncDataType == RigNNCData::propertyNameRiCombTransByArea() )
if ( nncDataType == RiaDefines::propertyNameCombTrans() || nncDataType == RiaDefines::propertyNameFluxGas() ||
nncDataType == RiaDefines::propertyNameFluxOil() || nncDataType == RiaDefines::propertyNameFluxWat() ||
nncDataType == RiaDefines::propertyNameRiCombMult() || nncDataType == RiaDefines::propertyNameRiCombTrans() ||
nncDataType == RiaDefines::propertyNameRiCombTransByArea() )
{
return true;
}

View File

@ -19,6 +19,10 @@
#pragma once
#include "RiaNncDefines.h"
#include "RigNncConnection.h"
#include "cvfObject.h"
#include "cvfStructGrid.h"
#include "cvfVector3.h"
@ -31,28 +35,6 @@ class RigMainGrid;
class RigCell;
class RigEclipseResultAddress;
class RigConnection
{
public:
RigConnection()
: m_c1GlobIdx( cvf::UNDEFINED_SIZE_T )
, m_c1Face( cvf::StructGridInterface::NO_FACE )
, m_c2GlobIdx( cvf::UNDEFINED_SIZE_T )
{
}
bool hasCommonArea() const
{
return m_polygon.size() > 0;
}
size_t m_c1GlobIdx;
cvf::StructGridInterface::FaceType m_c1Face;
size_t m_c2GlobIdx;
std::vector<cvf::Vec3d> m_polygon;
};
class RigNNCData : public cvf::Object
{
public:
@ -63,53 +45,15 @@ public:
NNC_GENERATED
};
static QString propertyNameFluxWat()
{
return "FLRWAT";
}
static QString propertyNameFluxOil()
{
return "FLROIL";
}
static QString propertyNameFluxGas()
{
return "FLRGAS";
}
static QString propertyNameCombTrans()
{
return "TRAN";
}
static QString propertyNameRiCombTrans()
{
return "riTRAN";
}
static QString propertyNameRiCombTransByArea()
{
return "riTRANbyArea";
}
static QString propertyNameRiCombMult()
{
return "riMULT";
}
RigNNCData();
void processConnections( const RigMainGrid& mainGrid );
void processNativeConnections( const RigMainGrid& mainGrid );
void computeCompleteSetOfNncs( const RigMainGrid* mainGrid );
static cvf::StructGridInterface::FaceType calculateCellFaceOverlap( const RigCell& c1,
const RigCell& c2,
const RigMainGrid& mainGrid,
std::vector<size_t>* connectionPolygon,
std::vector<cvf::Vec3d>* connectionIntersections );
void setConnections( std::vector<RigConnection>& connections );
size_t nativeConnectionCount() const;
std::vector<RigConnection>& connections()
{
return m_connections;
}
const std::vector<RigConnection>& connections() const
{
return m_connections;
}
const std::vector<RigConnection>& connections() const;
std::vector<double>& makeStaticConnectionScalarResult( QString nncDataType );
const std::vector<double>* staticConnectionScalarResult( const RigEclipseResultAddress& resVarAddr ) const;
@ -146,6 +90,7 @@ private:
private:
std::vector<RigConnection> m_connections;
size_t m_nativeConnectionCount;
std::map<QString, std::vector<std::vector<double>>> m_connectionResults;
std::map<RigEclipseResultAddress, QString> m_resultAddrToNNCDataType;
};

View File

@ -0,0 +1,39 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNncConnection.h"
#include "cvfMath.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigConnection::RigConnection()
: m_c1GlobIdx( cvf::UNDEFINED_SIZE_T )
, m_c1Face( cvf::StructGridInterface::NO_FACE )
, m_c2GlobIdx( cvf::UNDEFINED_SIZE_T )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigConnection::hasCommonArea() const
{
return m_polygon.size() > 0;
}

View File

@ -0,0 +1,41 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "cvfStructGrid.h"
#include "cvfVector3.h"
#include <vector>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class RigConnection
{
public:
RigConnection();
bool hasCommonArea() const;
size_t m_c1GlobIdx;
cvf::StructGridInterface::FaceType m_c1Face;
size_t m_c2GlobIdx;
std::vector<cvf::Vec3d> m_polygon;
};

View File

@ -103,9 +103,9 @@ RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator
progress.incrementProgress();
// TODO: oil or gas flowrate
// TODO: oil or gas flow rate
std::vector<const std::vector<double>*> flowrateNNCatAllTimeSteps;
QString nncConnectionProperty = mainGrid->nncData()->propertyNameFluxWat();
QString nncConnectionProperty = RiaDefines::propertyNameFluxWat();
progress.incrementProgress();

View File

@ -536,7 +536,7 @@ void RigReservoirBuilderMock::addFaults( RigEclipseCaseData* eclipseCase )
grid->setFaults( faults );
// NNCs
std::vector<RigConnection>& nncConnections = grid->nncData()->connections();
std::vector<RigConnection> nncConnections;
{
size_t i1 = 2;
size_t j1 = 2;
@ -561,8 +561,10 @@ void RigReservoirBuilderMock::addFaults( RigEclipseCaseData* eclipseCase )
addNnc( grid, i1, j1, k1, i2, j2, k2, nncConnections );
}
grid->nncData()->setConnections( nncConnections );
std::vector<double>& tranVals = grid->nncData()->makeStaticConnectionScalarResult(
RigNNCData::propertyNameCombTrans() );
RiaDefines::propertyNameCombTrans() );
for ( size_t cIdx = 0; cIdx < tranVals.size(); ++cIdx )
{
tranVals[cIdx] = 0.2;

View File

@ -20,6 +20,7 @@
#include "RigSimulationWellCenterLineCalculator.h"
#include "RigCell.h"
#include "RigCellFaceGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
@ -800,7 +801,8 @@ private:
std::vector<size_t> poygonIndices;
std::vector<cvf::Vec3d> intersections;
auto contactFace = RigNNCData::calculateCellFaceOverlap( c1,
auto contactFace =
RigCellFaceGeometryTools::calculateCellFaceOverlap( c1,
c2,
*( m_eclipseCaseData->mainGrid() ),
&poygonIndices,

View File

@ -16,6 +16,7 @@
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RigSimWellData.h"