mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-25 18:55:39 -06:00
Moved code to new library: ResultStatisticsCache
Moved RigStatisticsCalculator.h/.cpp, RigStatisticsDataCache.h/.cpp, RigStatisticsMath.h/.cpp to new library ResultStatisticsCache. ResInsight and some unit tests now link with this new library.
This commit is contained in:
18
ApplicationCode/ResultStatisticsCache/CMakeLists.txt
Normal file
18
ApplicationCode/ResultStatisticsCache/CMakeLists.txt
Normal file
@@ -0,0 +1,18 @@
|
||||
cmake_minimum_required (VERSION 2.8)
|
||||
|
||||
project (ResultStatisticsCache)
|
||||
|
||||
include_directories(
|
||||
${LibCore_SOURCE_DIR}
|
||||
)
|
||||
|
||||
add_library( ${PROJECT_NAME}
|
||||
RigStatisticsCalculator.h
|
||||
RigStatisticsCalculator.cpp
|
||||
RigStatisticsDataCache.h
|
||||
RigStatisticsDataCache.cpp
|
||||
RigStatisticsMath.h
|
||||
RigStatisticsMath.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${PROJECT_NAME} LibCore)
|
||||
@@ -0,0 +1,44 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) Statoil ASA
|
||||
// Copyright (C) Ceetron Solutions AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "RigStatisticsCalculator.h"
|
||||
|
||||
#include <cmath> // Needed for HUGE_VAL on Linux
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsCalculator::meanCellScalarValue(double& meanValue)
|
||||
{
|
||||
double valueSum = 0.0;
|
||||
size_t sampleCount = 0;
|
||||
|
||||
this->valueSumAndSampleCount(valueSum, sampleCount);
|
||||
|
||||
if (sampleCount == 0)
|
||||
{
|
||||
meanValue = HUGE_VAL;
|
||||
}
|
||||
else
|
||||
{
|
||||
meanValue = valueSum / sampleCount;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -0,0 +1,44 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) Statoil ASA
|
||||
// Copyright (C) Ceetron Solutions AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cvfBase.h"
|
||||
#include "cvfObject.h"
|
||||
#include "cvfCollection.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
class RigHistogramCalculator;
|
||||
|
||||
//==================================================================================================
|
||||
///
|
||||
//==================================================================================================
|
||||
class RigStatisticsCalculator : public cvf::Object
|
||||
{
|
||||
public:
|
||||
virtual void minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max) = 0;
|
||||
virtual void posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg) = 0;
|
||||
|
||||
void meanCellScalarValue(double& meanValue);
|
||||
virtual void valueSumAndSampleCount(double& valueSum, size_t& sampleCount) = 0;
|
||||
virtual void addDataToHistogramCalculator(RigHistogramCalculator& histogramCalculator) = 0;
|
||||
|
||||
virtual size_t timeStepCount() = 0;
|
||||
};
|
||||
206
ApplicationCode/ResultStatisticsCache/RigStatisticsDataCache.cpp
Normal file
206
ApplicationCode/ResultStatisticsCache/RigStatisticsDataCache.cpp
Normal file
@@ -0,0 +1,206 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) Statoil ASA
|
||||
// Copyright (C) Ceetron Solutions AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "RigStatisticsDataCache.h"
|
||||
|
||||
#include "RigStatisticsCalculator.h"
|
||||
#include "RigStatisticsMath.h"
|
||||
|
||||
#include <cmath> // Needed for HUGE_VAL on Linux
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
RigStatisticsDataCache::RigStatisticsDataCache(RigStatisticsCalculator* statisticsCalculator)
|
||||
: m_statisticsCalculator(statisticsCalculator)
|
||||
{
|
||||
clearAllStatistics();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::clearAllStatistics()
|
||||
{
|
||||
m_minValue = HUGE_VAL;
|
||||
m_maxValue = -HUGE_VAL;
|
||||
m_posClosestToZero = HUGE_VAL;
|
||||
m_negClosestToZero = -HUGE_VAL;
|
||||
m_p10 = HUGE_VAL;
|
||||
m_p90 = HUGE_VAL;
|
||||
m_meanValue = HUGE_VAL;
|
||||
|
||||
m_histogram.clear();
|
||||
m_maxMinValuesPrTs.clear();
|
||||
m_posNegClosestToZeroPrTs.clear();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::minMaxCellScalarValues(double& min, double& max)
|
||||
{
|
||||
if (m_minValue == HUGE_VAL)
|
||||
{
|
||||
min = HUGE_VAL;
|
||||
max = -HUGE_VAL;
|
||||
|
||||
size_t i;
|
||||
for (i = 0; i < m_statisticsCalculator->timeStepCount(); i++)
|
||||
{
|
||||
double tsmin, tsmax;
|
||||
this->minMaxCellScalarValues(i, tsmin, tsmax);
|
||||
if (tsmin < min) min = tsmin;
|
||||
if (tsmax > max) max = tsmax;
|
||||
}
|
||||
|
||||
m_minValue = min;
|
||||
m_maxValue = max;
|
||||
}
|
||||
|
||||
min = m_minValue;
|
||||
max = m_maxValue;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max)
|
||||
{
|
||||
if (timeStepIndex >= m_maxMinValuesPrTs.size())
|
||||
{
|
||||
m_maxMinValuesPrTs.resize(timeStepIndex + 1, std::make_pair(HUGE_VAL, -HUGE_VAL));
|
||||
}
|
||||
|
||||
if (m_maxMinValuesPrTs[timeStepIndex].first == HUGE_VAL)
|
||||
{
|
||||
min = HUGE_VAL;
|
||||
max = -HUGE_VAL;
|
||||
|
||||
m_statisticsCalculator->minMaxCellScalarValues(timeStepIndex, min, max);
|
||||
|
||||
m_maxMinValuesPrTs[timeStepIndex].first = min;
|
||||
m_maxMinValuesPrTs[timeStepIndex].second = max;
|
||||
}
|
||||
|
||||
min = m_maxMinValuesPrTs[timeStepIndex].first;
|
||||
max = m_maxMinValuesPrTs[timeStepIndex].second;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::posNegClosestToZero(double& pos, double& neg)
|
||||
{
|
||||
if (m_posClosestToZero == HUGE_VAL)
|
||||
{
|
||||
pos = HUGE_VAL;
|
||||
neg = -HUGE_VAL;
|
||||
|
||||
size_t i;
|
||||
for (i = 0; i < m_statisticsCalculator->timeStepCount(); i++)
|
||||
{
|
||||
double tsNeg, tsPos;
|
||||
this->posNegClosestToZero(i, tsPos, tsNeg);
|
||||
if (tsNeg > neg && tsNeg < 0) neg = tsNeg;
|
||||
if (tsPos < pos && tsPos > 0) pos = tsPos;
|
||||
}
|
||||
|
||||
m_posClosestToZero = pos;
|
||||
m_negClosestToZero = neg;
|
||||
}
|
||||
|
||||
pos = m_posClosestToZero;
|
||||
neg = m_negClosestToZero;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg)
|
||||
{
|
||||
if (timeStepIndex >= m_posNegClosestToZeroPrTs.size())
|
||||
{
|
||||
m_posNegClosestToZeroPrTs.resize(timeStepIndex + 1, std::make_pair(HUGE_VAL, -HUGE_VAL));
|
||||
}
|
||||
|
||||
if (m_posNegClosestToZeroPrTs[timeStepIndex].first == HUGE_VAL)
|
||||
{
|
||||
pos = HUGE_VAL;
|
||||
neg = -HUGE_VAL;
|
||||
|
||||
m_statisticsCalculator->posNegClosestToZero(timeStepIndex, pos, neg);
|
||||
|
||||
m_posNegClosestToZeroPrTs[timeStepIndex].first = pos;
|
||||
m_posNegClosestToZeroPrTs[timeStepIndex].second = neg;
|
||||
}
|
||||
|
||||
pos = m_posNegClosestToZeroPrTs[timeStepIndex].first;
|
||||
neg = m_posNegClosestToZeroPrTs[timeStepIndex].second;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram()
|
||||
{
|
||||
if (m_histogram.size() == 0)
|
||||
{
|
||||
double min;
|
||||
double max;
|
||||
size_t nBins = 100;
|
||||
this->minMaxCellScalarValues(min, max);
|
||||
|
||||
RigHistogramCalculator histCalc(min, max, nBins, &m_histogram);
|
||||
|
||||
m_statisticsCalculator->addDataToHistogramCalculator(histCalc);
|
||||
|
||||
m_p10 = histCalc.calculatePercentil(0.1);
|
||||
m_p90 = histCalc.calculatePercentil(0.9);
|
||||
}
|
||||
|
||||
return m_histogram;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::p10p90CellScalarValues(double& p10, double& p90)
|
||||
{
|
||||
// First make sure they are calculated
|
||||
const std::vector<size_t>& histogr = this->cellScalarValuesHistogram();
|
||||
|
||||
p10 = m_p10;
|
||||
p90 = m_p90;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigStatisticsDataCache::meanCellScalarValues(double& meanValue)
|
||||
{
|
||||
if (m_meanValue == HUGE_VAL)
|
||||
{
|
||||
m_statisticsCalculator->meanCellScalarValue(m_meanValue);
|
||||
}
|
||||
|
||||
meanValue = m_meanValue;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,66 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) Statoil ASA
|
||||
// Copyright (C) Ceetron Solutions AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "RigStatisticsCalculator.h"
|
||||
|
||||
#include "cvfBase.h"
|
||||
#include "cvfObject.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
||||
//==================================================================================================
|
||||
///
|
||||
//==================================================================================================
|
||||
class RigStatisticsDataCache : public cvf::Object
|
||||
{
|
||||
public:
|
||||
RigStatisticsDataCache(RigStatisticsCalculator* statisticsCalculator);
|
||||
|
||||
void clearAllStatistics();
|
||||
|
||||
void minMaxCellScalarValues(double& min, double& max);
|
||||
void minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max);
|
||||
void posNegClosestToZero(double& pos, double& neg);
|
||||
void posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg);
|
||||
|
||||
void p10p90CellScalarValues(double& p10, double& p90);
|
||||
void meanCellScalarValues(double& meanValue);
|
||||
const std::vector<size_t>& cellScalarValuesHistogram();
|
||||
|
||||
private:
|
||||
double m_minValue;
|
||||
double m_maxValue;
|
||||
double m_posClosestToZero;
|
||||
double m_negClosestToZero;
|
||||
|
||||
double m_p10;
|
||||
double m_p90;
|
||||
double m_meanValue;
|
||||
|
||||
std::vector<size_t> m_histogram;
|
||||
|
||||
std::vector<std::pair<double, double> > m_maxMinValuesPrTs; ///< Max min values for each time step
|
||||
std::vector<std::pair<double, double> > m_posNegClosestToZeroPrTs; ///< PosNeg values for each time step
|
||||
|
||||
cvf::ref<RigStatisticsCalculator> m_statisticsCalculator;
|
||||
};
|
||||
|
||||
245
ApplicationCode/ResultStatisticsCache/RigStatisticsMath.cpp
Normal file
245
ApplicationCode/ResultStatisticsCache/RigStatisticsMath.cpp
Normal file
@@ -0,0 +1,245 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "RigStatisticsMath.h"
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include "cvfBase.h"
|
||||
#include "cvfMath.h"
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// A function to do basic statistical calculations
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
void RigStatisticsMath::calculateBasicStatistics(const std::vector<double>& values, double* min, double* max, double* range, double* mean, double* dev)
|
||||
{
|
||||
double m_min(HUGE_VAL);
|
||||
double m_max(-HUGE_VAL);
|
||||
double m_mean(HUGE_VAL);
|
||||
double m_dev(HUGE_VAL);
|
||||
|
||||
double sum = 0.0;
|
||||
double sumSquared = 0.0;
|
||||
|
||||
size_t validValueCount = 0;
|
||||
|
||||
for (size_t i = 0; i < values.size(); i++)
|
||||
{
|
||||
double val = values[i];
|
||||
if (val == HUGE_VAL) continue;
|
||||
|
||||
validValueCount++;
|
||||
|
||||
if (val < m_min) m_min = val;
|
||||
if (val > m_max) m_max = val;
|
||||
|
||||
sum += val;
|
||||
sumSquared += (val * val);
|
||||
}
|
||||
|
||||
if (validValueCount > 0)
|
||||
{
|
||||
m_mean = sum / validValueCount;
|
||||
|
||||
|
||||
// http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
|
||||
// Running standard deviation
|
||||
|
||||
double s0 = static_cast<double>(validValueCount);
|
||||
double s1 = sum;
|
||||
double s2 = sumSquared;
|
||||
|
||||
m_dev = sqrt( (s0 * s2) - (s1 * s1) ) / s0;
|
||||
}
|
||||
|
||||
if (min) *min = m_min;
|
||||
if (max) *max = m_max;
|
||||
if (range) *range = m_max - m_min;
|
||||
|
||||
if (mean) *mean = m_mean;
|
||||
if (dev) *dev = m_dev;
|
||||
}
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// Calculate the percentiles of /a inputValues at the pValPosition percentages using the "Nearest Rank"
|
||||
/// method. This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
|
||||
/// the inputValues does not contain any valid values
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions)
|
||||
{
|
||||
std::vector<double> sortedValues;
|
||||
sortedValues.reserve(inputValues.size());
|
||||
|
||||
for (size_t i = 0; i < inputValues.size(); ++i)
|
||||
{
|
||||
if (inputValues[i] != HUGE_VAL)
|
||||
{
|
||||
sortedValues.push_back(inputValues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(sortedValues.begin(), sortedValues.end());
|
||||
|
||||
std::vector<double> percentiles(pValPositions.size(), HUGE_VAL);
|
||||
if (sortedValues.size())
|
||||
{
|
||||
for (size_t i = 0; i < pValPositions.size(); ++i)
|
||||
{
|
||||
double pVal = HUGE_VAL;
|
||||
|
||||
size_t pValIndex = static_cast<size_t>(sortedValues.size() * cvf::Math::abs(pValPositions[i]) / 100);
|
||||
|
||||
if (pValIndex >= sortedValues.size() ) pValIndex = sortedValues.size() - 1;
|
||||
|
||||
pVal = sortedValues[pValIndex];
|
||||
percentiles[i] = pVal;
|
||||
}
|
||||
}
|
||||
|
||||
return percentiles;
|
||||
};
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
/// Calculate the percentiles of /a inputValues at the pValPosition percentages by interpolating input values.
|
||||
/// This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
|
||||
/// the inputValues does not contain any valid values
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
std::vector<double> RigStatisticsMath::calculateInterpolatedPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions)
|
||||
{
|
||||
std::vector<double> sortedValues;
|
||||
sortedValues.reserve(inputValues.size());
|
||||
|
||||
for (size_t i = 0; i < inputValues.size(); ++i)
|
||||
{
|
||||
if (inputValues[i] != HUGE_VAL)
|
||||
{
|
||||
sortedValues.push_back(inputValues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(sortedValues.begin(), sortedValues.end());
|
||||
|
||||
std::vector<double> percentiles(pValPositions.size(), HUGE_VAL);
|
||||
if (sortedValues.size())
|
||||
{
|
||||
for (size_t i = 0; i < pValPositions.size(); ++i)
|
||||
{
|
||||
double pVal = HUGE_VAL;
|
||||
|
||||
double doubleIndex = (sortedValues.size() - 1) * cvf::Math::abs(pValPositions[i]) / 100.0;
|
||||
|
||||
size_t lowerValueIndex = static_cast<size_t>(floor(doubleIndex));
|
||||
size_t upperValueIndex = lowerValueIndex + 1;
|
||||
|
||||
double upperValueWeight = doubleIndex - lowerValueIndex;
|
||||
assert(upperValueWeight < 1.0);
|
||||
|
||||
if (upperValueIndex < sortedValues.size())
|
||||
{
|
||||
pVal = (1.0 - upperValueWeight) * sortedValues[lowerValueIndex] + upperValueWeight * sortedValues[upperValueIndex];
|
||||
}
|
||||
else
|
||||
{
|
||||
pVal = sortedValues[lowerValueIndex];
|
||||
}
|
||||
percentiles[i] = pVal;
|
||||
}
|
||||
}
|
||||
|
||||
return percentiles;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
RigHistogramCalculator::RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram)
|
||||
{
|
||||
assert(histogram);
|
||||
assert(nBins > 0);
|
||||
|
||||
if (max == min) { nBins = 1; } // Avoid dividing on 0 range
|
||||
|
||||
m_histogram = histogram;
|
||||
m_min = min;
|
||||
m_observationCount = 0;
|
||||
|
||||
// Initialize bins
|
||||
m_histogram->resize(nBins);
|
||||
for (size_t i = 0; i < m_histogram->size(); ++i) (*m_histogram)[i] = 0;
|
||||
|
||||
m_range = max - min;
|
||||
maxIndex = nBins-1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void RigHistogramCalculator::addData(const std::vector<double>& data)
|
||||
{
|
||||
assert(m_histogram);
|
||||
for (size_t i = 0; i < data.size(); ++i)
|
||||
{
|
||||
if (data[i] == HUGE_VAL)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t index = 0;
|
||||
|
||||
if (maxIndex > 0) index = (size_t)(maxIndex*(data[i] - m_min)/m_range);
|
||||
|
||||
if(index < m_histogram->size()) // Just clip to the max min range (-index will overflow to positive )
|
||||
{
|
||||
(*m_histogram)[index]++;
|
||||
m_observationCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
double RigHistogramCalculator::calculatePercentil(double pVal)
|
||||
{
|
||||
assert(m_histogram);
|
||||
assert(m_histogram->size());
|
||||
assert( 0.0 <= pVal && pVal <= 1.0);
|
||||
|
||||
double pValObservationCount = pVal*m_observationCount;
|
||||
if (pValObservationCount == 0.0) return m_min;
|
||||
|
||||
size_t accObsCount = 0;
|
||||
double binWidth = m_range/m_histogram->size();
|
||||
for (size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx)
|
||||
{
|
||||
size_t binObsCount = (*m_histogram)[binIdx];
|
||||
|
||||
accObsCount += binObsCount;
|
||||
if (accObsCount >= pValObservationCount)
|
||||
{
|
||||
double domainValueAtEndOfBin = m_min + (binIdx+1) * binWidth;
|
||||
double unusedFractionOfLastBin = (double)(accObsCount - pValObservationCount)/binObsCount;
|
||||
return domainValueAtEndOfBin - unusedFractionOfLastBin*binWidth;
|
||||
}
|
||||
}
|
||||
assert(false);
|
||||
return HUGE_VAL;
|
||||
}
|
||||
55
ApplicationCode/ResultStatisticsCache/RigStatisticsMath.h
Normal file
55
ApplicationCode/ResultStatisticsCache/RigStatisticsMath.h
Normal file
@@ -0,0 +1,55 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
|
||||
class RigStatisticsMath
|
||||
{
|
||||
public:
|
||||
static void calculateBasicStatistics(const std::vector<double>& values, double* min, double* max, double* range, double* mean, double* dev);
|
||||
static std::vector<double> calculateNearestRankPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions);
|
||||
static std::vector<double> calculateInterpolatedPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions);
|
||||
};
|
||||
|
||||
//==================================================================================================
|
||||
/// Class to calculate a histogram, and histogram based p-value estimates
|
||||
//==================================================================================================
|
||||
|
||||
class RigHistogramCalculator
|
||||
{
|
||||
public:
|
||||
RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram);
|
||||
|
||||
void addData(const std::vector<double>& data);
|
||||
|
||||
/// Calculates the estimated percentile from the histogram.
|
||||
/// the percentile is the domain value at which pVal of the observations are below it.
|
||||
/// Will only consider observed values between min and max, as all other values are discarded from the histogram
|
||||
|
||||
double calculatePercentil(double pVal);
|
||||
|
||||
private:
|
||||
size_t maxIndex;
|
||||
double m_range;
|
||||
double m_min;
|
||||
size_t m_observationCount;
|
||||
std::vector<size_t>* m_histogram;
|
||||
};
|
||||
Reference in New Issue
Block a user