Add helper class for polygon and 2D binary image operations

This commit is contained in:
Magne Sjaastad 2025-01-16 17:00:41 +01:00
parent 62bb40c4f4
commit 882e64f790
12 changed files with 609 additions and 61 deletions

View File

@ -21,7 +21,7 @@
#include "Polygons/RimPolygon.h"
#include "Polygons/RimPolygonInView.h"
#include "RigCellGeometryTools.h"
#include "RigPolygonTools.h"
#include "cafSelectionManager.h"
@ -46,21 +46,47 @@ void RicSimplifyPolygonFeature::onActionTriggered( bool isChecked )
auto selPolygons = selectedPolygons();
if ( selPolygons.empty() ) return;
const double defaultEpsilon = 10.0;
bool ok;
auto epsilon =
QInputDialog::getDouble( nullptr, "Simplify Polygon Threshold", "Threshold:", defaultEpsilon, 1.0, 1000.0, 1, &ok, Qt::WindowFlags(), 1 );
if ( !ok ) return;
std::vector<std::vector<cvf::Vec3d>> originalCoords;
for ( auto sourcePolygon : selPolygons )
{
auto coords = sourcePolygon->pointsInDomainCoords();
RigCellGeometryTools::simplifyPolygon( &coords, epsilon );
originalCoords.push_back( sourcePolygon->pointsInDomainCoords() );
}
sourcePolygon->setPointsInDomainCoords( coords );
sourcePolygon->coordinatesChanged.send();
const int defaultEpsilon = 10;
QInputDialog inputDialog;
inputDialog.setWindowTitle( "Simplify Polygon" );
inputDialog.setLabelText( "Threshold (larger value removes more points) :" );
inputDialog.setInputMode( QInputDialog::IntInput );
inputDialog.setIntRange( 10, 200 );
inputDialog.setIntValue( defaultEpsilon );
connect( &inputDialog,
&QInputDialog::intValueChanged,
[&originalCoords, &selPolygons]( int value )
{
for ( size_t i = 0; i < originalCoords.size(); i++ )
{
auto coords = originalCoords[i];
RigPolygonTools::simplifyPolygon( coords, value );
auto sourcePolygon = selPolygons[i];
sourcePolygon->setPointsInDomainCoords( coords );
sourcePolygon->coordinatesChanged.send();
}
} );
if ( inputDialog.exec() == QDialog::Rejected )
{
for ( size_t i = 0; i < originalCoords.size(); i++ )
{
auto coords = originalCoords[i];
auto sourcePolygon = selPolygons[i];
sourcePolygon->setPointsInDomainCoords( coords );
sourcePolygon->coordinatesChanged.send();
}
}
}

View File

@ -89,6 +89,7 @@ set(SOURCE_GROUP_HEADER_FILES
${CMAKE_CURRENT_LIST_DIR}/RigEclipseContourMapProjection.h
${CMAKE_CURRENT_LIST_DIR}/RigGeoMechContourMapProjection.h
${CMAKE_CURRENT_LIST_DIR}/RigStatisticsContourMapProjection.h
${CMAKE_CURRENT_LIST_DIR}/RigPolygonTools.h
)
set(SOURCE_GROUP_SOURCE_FILES
@ -180,6 +181,7 @@ set(SOURCE_GROUP_SOURCE_FILES
${CMAKE_CURRENT_LIST_DIR}/RigEclipseContourMapProjection.cpp
${CMAKE_CURRENT_LIST_DIR}/RigGeoMechContourMapProjection.cpp
${CMAKE_CURRENT_LIST_DIR}/RigStatisticsContourMapProjection.cpp
${CMAKE_CURRENT_LIST_DIR}/RigPolygonTools.cpp
)
list(APPEND CODE_HEADER_FILES ${SOURCE_GROUP_HEADER_FILES})

View File

@ -233,50 +233,6 @@ void RigCellGeometryTools::createPolygonFromLineSegments( std::list<std::pair<cv
}
}
//--------------------------------------------------------------------------------------------------
/// Ramer-Douglas-Peucker simplification algorithm
///
/// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
//--------------------------------------------------------------------------------------------------
void RigCellGeometryTools::simplifyPolygon( std::vector<cvf::Vec3d>* vertices, double epsilon )
{
CVF_ASSERT( vertices );
if ( vertices->size() < 3 ) return;
std::pair<size_t, double> maxDistPoint( 0u, 0.0 );
for ( size_t i = 1; i < vertices->size() - 1; ++i )
{
cvf::Vec3d v = vertices->at( i );
double u;
cvf::Vec3d v_proj = cvf::GeometryTools::projectPointOnLine( vertices->front(), vertices->back(), v, &u );
double distance = ( v_proj - v ).length();
if ( distance > maxDistPoint.second )
{
maxDistPoint = std::make_pair( i, distance );
}
}
if ( maxDistPoint.second > epsilon )
{
std::vector<cvf::Vec3d> newVertices1( vertices->begin(), vertices->begin() + maxDistPoint.first + 1 );
std::vector<cvf::Vec3d> newVertices2( vertices->begin() + maxDistPoint.first, vertices->end() );
// Recurse
simplifyPolygon( &newVertices1, epsilon );
simplifyPolygon( &newVertices2, epsilon );
std::vector<cvf::Vec3d> newVertices( newVertices1.begin(), newVertices1.end() - 1 );
newVertices.insert( newVertices.end(), newVertices2.begin(), newVertices2.end() );
*vertices = newVertices;
}
else
{
std::vector<cvf::Vec3d> newVertices = { vertices->front(), vertices->back() };
*vertices = newVertices;
}
}
//==================================================================================================
///
//==================================================================================================

View File

@ -39,7 +39,6 @@ public:
static void createPolygonFromLineSegments( std::list<std::pair<cvf::Vec3d, cvf::Vec3d>>& intersectionLineSegments,
std::vector<std::vector<cvf::Vec3d>>& polygons,
double tolerance = 1.0e-4 );
static void simplifyPolygon( std::vector<cvf::Vec3d>* vertices, double epsilon );
static void findCellLocalXYZ( const std::array<cvf::Vec3d, 8>& hexCorners,
cvf::Vec3d& localXdirection,

View File

@ -48,7 +48,6 @@ public:
cvf::Vec2ui numberOfVerticesIJ() const;
cvf::uint numberOfCells() const;
cvf::uint numberOfValidCells() const;
size_t numberOfVertices() const;
cvf::Vec3d origin3d() const;

View File

@ -121,6 +121,20 @@ double RigContourMapProjection::valueAtVertex( unsigned int i, unsigned int j )
return std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigContourMapProjection::filteredValueAtVertex( unsigned int i, unsigned int j ) const
{
size_t index = m_contourMapGrid.vertexIndexFromIJ( i, j );
if ( index < numberOfVertices() )
{
auto values = aggregatedVertexResultsFiltered();
return values.at( index );
}
return std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -187,6 +201,14 @@ cvf::Vec3d RigContourMapProjection::origin3d() const
return m_contourMapGrid.expandedBoundingBox().min();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigContourMapProjection::topDepthBoundingBox() const
{
return m_contourMapGrid.expandedBoundingBox().max().z();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -440,9 +462,9 @@ const std::vector<double>& RigContourMapProjection::aggregatedResults() const
//--------------------------------------------------------------------------------------------------
std::vector<double> RigContourMapProjection::aggregatedVertexResultsFiltered() const
{
std::vector<double> filteredResults = m_aggregatedVertexResults;
if ( m_valueFilter )
{
std::vector<double> filteredResults = m_aggregatedVertexResults;
std::transform( filteredResults.begin(),
filteredResults.end(),
filteredResults.begin(),
@ -450,9 +472,10 @@ std::vector<double> RigContourMapProjection::aggregatedVertexResultsFiltered() c
return ( value < m_valueFilter->first || value > m_valueFilter->second ) ? std::numeric_limits<double>::infinity()
: value;
} );
return filteredResults;
}
return filteredResults;
return m_aggregatedVertexResults;
}
//--------------------------------------------------------------------------------------------------

View File

@ -59,6 +59,7 @@ public:
cvf::Vec2ui numberOfVerticesIJ() const;
double valueAtVertex( unsigned int i, unsigned int j ) const;
double filteredValueAtVertex( unsigned int i, unsigned int j ) const;
unsigned int numberOfCells() const;
unsigned int numberOfValidCells() const;
@ -66,6 +67,7 @@ public:
bool checkForMapIntersection( const cvf::Vec3d& domainPoint3d, cvf::Vec2d* contourMapPoint, double* valueAtPoint ) const;
cvf::Vec3d origin3d() const;
double topDepthBoundingBox() const;
std::vector<double> xVertexPositions() const;
std::vector<double> yVertexPositions() const;

View File

@ -23,6 +23,7 @@
#include "RigCellGeometryTools.h"
#include "RigContourMapGrid.h"
#include "RigContourMapProjection.h"
#include "RigPolygonTools.h"
#include "cvfGeometryUtils.h"
@ -323,7 +324,7 @@ std::pair<std::vector<RigContourMapTrianglesGenerator::ContourPolygons>, std::ve
for ( RigContourPolygonsTools::ContourPolygon& polygon : contourPolygons[i] )
{
RigCellGeometryTools::simplifyPolygon( &polygon.vertices, simplifyEpsilon );
RigPolygonTools::simplifyPolygon( polygon.vertices, simplifyEpsilon );
}
}

View File

@ -0,0 +1,327 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2025 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigPolygonTools.h"
#include "cvfGeometryTools.h"
#include <optional>
#include <stack>
#include <utility>
namespace RigPolygonTools
{
namespace internal
{
// Function to check if a point is valid and within bounds
bool isValid( int x, int y, int rows, int cols, const IntegerImage& image, const IntegerImage& visited )
{
return x >= 0 && x < rows && y >= 0 && y < cols && image[x][y] == 1 && !visited[x][y];
}
bool isValidImage( const IntegerImage& image )
{
if ( image.empty() ) return false;
auto rowSize = image[0].size();
for ( const auto& row : image )
{
if ( row.size() != rowSize ) return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void floodFill( IntegerImage& image, int x, int y, int oldColor, int newColor )
{
if ( !isValidImage( image ) ) return;
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
std::stack<std::pair<int, int>> stack;
stack.push( { x, y } );
while ( !stack.empty() )
{
auto [cx, cy] = stack.top();
stack.pop();
if ( cx < 0 || cy < 0 || cx >= rows || cy >= cols || image[cx][cy] != oldColor ) continue;
image[cx][cy] = newColor;
stack.push( { cx + 1, cy } );
stack.push( { cx - 1, cy } );
stack.push( { cx, cy + 1 } );
stack.push( { cx, cy - 1 } );
}
}
}; // namespace internal
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage erode( IntegerImage image, int kernelSize )
{
if ( !internal::isValidImage( image ) ) return {};
if ( kernelSize <= 0 ) return {};
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
int offset = kernelSize / 2;
IntegerImage eroded( rows, std::vector<int>( cols, 0 ) );
for ( int i = offset; i < rows - offset; ++i )
{
for ( int j = offset; j < cols - offset; ++j )
{
bool erodePixel = true;
for ( int ki = -offset; ki <= offset; ++ki )
{
for ( int kj = -offset; kj <= offset; ++kj )
{
if ( image[i + ki][j + kj] == 0 )
{
erodePixel = false;
break;
}
}
if ( !erodePixel ) break;
}
eroded[i][j] = erodePixel ? 1 : 0;
}
}
return eroded;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage dilate( IntegerImage image, int kernelSize )
{
if ( !internal::isValidImage( image ) ) return {};
if ( kernelSize <= 0 ) return {};
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
int offset = kernelSize / 2;
IntegerImage dilated( rows, std::vector<int>( cols, 0 ) );
for ( int i = offset; i < rows - offset; ++i )
{
for ( int j = offset; j < cols - offset; ++j )
{
bool dilatePixel = false;
for ( int ki = -offset; ki <= offset; ++ki )
{
for ( int kj = -offset; kj <= offset; ++kj )
{
if ( image[i + ki][j + kj] == 1 )
{
dilatePixel = true;
break;
}
}
if ( dilatePixel ) break;
}
dilated[i][j] = dilatePixel ? 1 : 0;
}
}
return dilated;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage fillInterior( IntegerImage sourceImage )
{
if ( !internal::isValidImage( sourceImage ) ) return {};
auto image = sourceImage;
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
// Flood fill the exterior (starting from the borders)
for ( int i = 0; i < rows; ++i )
{
if ( image[i][0] == 0 ) internal::floodFill( image, i, 0, 0, -1 );
if ( image[i][cols - 1] == 0 ) internal::floodFill( image, i, cols - 1, 0, -1 );
}
for ( int j = 0; j < cols; ++j )
{
if ( image[0][j] == 0 ) internal::floodFill( image, 0, j, 0, -1 );
if ( image[rows - 1][j] == 0 ) internal::floodFill( image, rows - 1, j, 0, -1 );
}
// Fill interior holes (remaining 0s)
for ( int i = 0; i < rows; ++i )
{
for ( int j = 0; j < cols; ++j )
{
if ( image[i][j] == 0 ) image[i][j] = 1;
}
}
// Restore the exterior
for ( int i = 0; i < rows; ++i )
{
for ( int j = 0; j < cols; ++j )
{
if ( image[i][j] == -1 ) image[i][j] = 0;
}
}
return image;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<int, int>> boundary( const IntegerImage& image )
{
if ( !internal::isValidImage( image ) ) return {};
std::vector<std::pair<int, int>> boundaries;
// Get dimensions of the image
int rows = static_cast<int>( image.size() );
int cols = static_cast<int>( image[0].size() );
// Direction vectors for clockwise search (8-connectivity)
const std::vector<std::pair<int, int>> directions = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 } };
// Helper lambda to check if a pixel is a valid boundary pixel
auto isBoundaryPixel = [&]( int x, int y )
{
if ( x < 0 || x >= rows || y < 0 || y >= cols || image[x][y] == 0 ) return false;
// Check if it's adjacent to a background pixel
for ( const auto& [dx, dy] : directions )
{
int nx = x + dx, ny = y + dy;
if ( nx < 0 || nx >= rows || ny < 0 || ny >= cols || image[nx][ny] == 0 )
{
return true;
}
}
return false;
};
// Find the starting boundary pixel
std::pair<int, int> start( -1, -1 );
for ( int row = 0; row < rows; ++row )
{
for ( int col = 0; col < cols; ++col )
{
if ( isBoundaryPixel( row, col ) )
{
start = { row, col };
break;
}
}
if ( start.first != -1 ) break;
}
if ( start.first == -1 ) return boundaries; // No boundary found
// Contour following algorithm
std::pair<int, int> current = start;
int direction = 0; // Start search direction (arbitrary)
do
{
boundaries.push_back( current );
bool foundNext = false;
// Look for the next boundary pixel in a clockwise direction
for ( int i = 0; i < 8; ++i )
{
int newDir = ( direction + i ) % 8;
int nx = current.first + directions[newDir].first;
int ny = current.second + directions[newDir].second;
if ( isBoundaryPixel( nx, ny ) )
{
current = { nx, ny };
direction = ( newDir + 6 ) % 8; // Adjust direction for next search
foundNext = true;
break;
}
}
// If no next pixel is found, the boundary is invalid or incomplete
if ( !foundNext ) break;
} while ( current != start ); // Stop when we loop back to the start
return boundaries;
}
//--------------------------------------------------------------------------------------------------
/// Ramer-Douglas-Peucker simplification algorithm
///
/// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
//--------------------------------------------------------------------------------------------------
void simplifyPolygon( std::vector<cvf::Vec3d>& vertices, double epsilon )
{
// If the polygon has fewer than 3 vertices, it cannot be simplified.
if ( vertices.size() < 3 ) return;
// Find the point with the maximum perpendicular distance from the line connecting the endpoints.
std::optional<std::pair<size_t, double>> maxDistPoint;
for ( size_t i = 1; i < vertices.size() - 1; ++i )
{
const cvf::Vec3d& point = vertices[i];
cvf::Vec3d projected = cvf::GeometryTools::projectPointOnLine( vertices.front(), vertices.back(), point );
double distance = ( projected - point ).length();
if ( !maxDistPoint || distance > maxDistPoint->second )
{
maxDistPoint = std::make_pair( i, distance );
}
}
// If the maximum distance exceeds epsilon, split and simplify recursively.
if ( maxDistPoint && maxDistPoint->second > epsilon )
{
size_t splitIndex = maxDistPoint->first;
// Divide the vertices into two segments.
std::vector<cvf::Vec3d> segment1( vertices.begin(), vertices.begin() + splitIndex + 1 );
std::vector<cvf::Vec3d> segment2( vertices.begin() + splitIndex, vertices.end() );
// Recursively simplify both segments.
simplifyPolygon( segment1, epsilon );
simplifyPolygon( segment2, epsilon );
// Combine the simplified segments, avoiding duplication at the split point.
vertices = std::move( segment1 );
vertices.pop_back(); // Remove duplicate at the split point.
vertices.insert( vertices.end(), segment2.begin(), segment2.end() );
}
else
{
// If no point exceeds the threshold, reduce to endpoints.
vertices = { vertices.front(), vertices.back() };
}
}
} // namespace RigPolygonTools

View File

@ -0,0 +1,39 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2025 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "cvfVector3.h"
#include <vector>
namespace RigPolygonTools
{
// Integer images are assumed to be 2D arrays of integers, where 0 is background and 1 is foreground.
using IntegerImage = std::vector<std::vector<int>>;
IntegerImage erode( IntegerImage image, int kernelSize );
IntegerImage dilate( IntegerImage image, int kernelSize );
IntegerImage fillInterior( IntegerImage sourceImage );
std::vector<std::pair<int, int>> boundary( const IntegerImage& image );
// Recursive function modifying the incoming vertices
void simplifyPolygon( std::vector<cvf::Vec3d>& vertices, double epsilon );
} // namespace RigPolygonTools

View File

@ -106,6 +106,7 @@ set(SOURCE_UNITTEST_FILES
${CMAKE_CURRENT_LIST_DIR}/RifOsduWellPathReader-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RigVfpTables-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RiaResultName-Test.cpp
${CMAKE_CURRENT_LIST_DIR}/RigPolygonTools-Test.cpp
)
if(RESINSIGHT_ENABLE_GRPC)

View File

@ -0,0 +1,173 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigPolygonTools.h"
#include "gtest/gtest.h"
// Test for erode function
TEST( RigPolygonToolsTest, ErodeTest )
{
// Arrange
RigPolygonTools::IntegerImage image = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } };
int kernelSize = 1;
RigPolygonTools::IntegerImage expected = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } };
// Act
RigPolygonTools::IntegerImage result = RigPolygonTools::erode( image, kernelSize );
// Assert
EXPECT_EQ( result, expected );
}
// Test for erode function with invalid input
TEST( RigPolygonToolsTest, ErodeInvalidInputTest )
{
// Arrange
RigPolygonTools::IntegerImage emptyImage = {};
int negativeKernelSize = -1;
// Act & Assert
EXPECT_EQ( emptyImage, RigPolygonTools::erode( emptyImage, 1 ) );
EXPECT_EQ( emptyImage, RigPolygonTools::erode( { { 1, 1 }, { 1 } }, 1 ) ); // Inconsistent row sizes
EXPECT_EQ( emptyImage, RigPolygonTools::erode( { { 1, 1 }, { 1, 1 } }, negativeKernelSize ) );
}
// Test for dilate function
TEST( RigPolygonToolsTest, DilateTest )
{
// Arrange
RigPolygonTools::IntegerImage image = {
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 },
{ 0, 0, 1, 0, 0 },
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 },
};
int kernelSize = 2;
RigPolygonTools::IntegerImage expected = {
{ 0, 0, 0, 0, 0 },
{ 0, 1, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 0, 0, 0, 0, 0 },
};
// Act
RigPolygonTools::IntegerImage result = RigPolygonTools::dilate( image, kernelSize );
// Assert
EXPECT_EQ( result, expected );
}
// Test for dilate function with invalid input
TEST( RigPolygonToolsTest, DilateInvalidInputTest )
{
// Arrange
RigPolygonTools::IntegerImage emptyImage = {};
int negativeKernelSize = -1;
// Act & Assert
EXPECT_EQ( emptyImage, RigPolygonTools::dilate( emptyImage, 1 ) );
EXPECT_EQ( emptyImage, RigPolygonTools::dilate( { { 1, 1 }, { 1 } }, 1 ) ); // Inconsistent row sizes
EXPECT_EQ( emptyImage, RigPolygonTools::dilate( { { 1, 1 }, { 1, 1 } }, negativeKernelSize ) );
}
// Test for fillInterior function
TEST( RigPolygonToolsTest, FillInteriorTest )
{
// Arrange
RigPolygonTools::IntegerImage image = { { 1, 1, 1 }, { 1, 0, 1 }, { 1, 1, 1 } };
RigPolygonTools::IntegerImage expected = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } };
// Act
RigPolygonTools::IntegerImage result = RigPolygonTools::fillInterior( image );
// Assert
EXPECT_EQ( result, expected );
}
// Test for fillInterior function with invalid input
TEST( RigPolygonToolsTest, FillInteriorInvalidInputTest )
{
// Arrange
RigPolygonTools::IntegerImage emptyImage = {};
// Act & Assert
EXPECT_EQ( emptyImage, RigPolygonTools::fillInterior( emptyImage ) );
EXPECT_EQ( emptyImage, RigPolygonTools::fillInterior( { { 1, 1 }, { 1 } } ) ); // Inconsistent row sizes
}
// Test for boundary function
TEST( RigPolygonToolsTest, BoundaryTest )
{
// Arrange
RigPolygonTools::IntegerImage image = { { 1, 1, 1 }, { 1, 0, 1 }, { 1, 1, 1 } };
std::vector<std::pair<int, int>> expected = { { 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 2 }, { 2, 2 }, { 2, 1 }, { 2, 0 }, { 1, 0 } };
// Act
std::vector<std::pair<int, int>> result = RigPolygonTools::boundary( image );
// Assert
EXPECT_EQ( result, expected );
}
// Test for boundary function with invalid input
TEST( RigPolygonToolsTest, BoundaryInvalidInputTest )
{
// Arrange
RigPolygonTools::IntegerImage emptyImage = {};
// Act & Assert
EXPECT_TRUE( RigPolygonTools::boundary( emptyImage ).empty() );
EXPECT_TRUE( RigPolygonTools::boundary( { { 1, 1 }, { 1 } } ).empty() ); // Inconsistent row sizes
}
// Test for simplifyPolygon function
TEST( RigPolygonToolsTest, SimplifyPolygonTest )
{
// Arrange
std::vector<cvf::Vec3d> vertices =
{ { 0.0, 0.0, 0.0 }, { 1.0, 0.1, 0.0 }, { 1.5, -0.1, 0.0 }, { 3.0, 5.0, 0.0 }, { 5.0, 6.0, 0.0 }, { 7.0, 7.0, 0.0 }, { 8.0, 8.0, 0.0 } };
double epsilon = 1;
std::vector<cvf::Vec3d> expected = { { 0.0, 0.0, 0.0 }, { 1.5, -0.1, 0.0 }, { 3.0, 5.0, 0.0 }, { 8.0, 8.0, 0.0 } };
// Act
RigPolygonTools::simplifyPolygon( vertices, epsilon );
// Assert
EXPECT_EQ( vertices.size(), expected.size() );
for ( size_t i = 0; i < vertices.size(); ++i )
{
EXPECT_DOUBLE_EQ( vertices[i].x(), expected[i].x() );
EXPECT_DOUBLE_EQ( vertices[i].y(), expected[i].y() );
EXPECT_DOUBLE_EQ( vertices[i].z(), expected[i].z() );
}
}
// Test for simplifyPolygon function with invalid input
TEST( RigPolygonToolsTest, SimplifyPolygonInvalidInputTest )
{
// Arrange
std::vector<cvf::Vec3d> emptyVertices;
double epsilon = 1.0;
// Act & Assert
EXPECT_NO_THROW( RigPolygonTools::simplifyPolygon( emptyVertices, epsilon ) );
EXPECT_EQ( emptyVertices.size(), 0 );
}