- pre-proto - Adding function for calculating fracture length.

This commit is contained in:
astridkbjorke 2017-01-26 09:06:18 +01:00
parent aedf184d14
commit 9c9592ccce
5 changed files with 230 additions and 22 deletions

View File

@ -261,20 +261,15 @@ void RimFracture::computeTransmissibility()
RimView* activeView = RiaApplication::instance()->activeReservoirView();
RimEclipseView* activeRiv = dynamic_cast<RimEclipseView*>(activeView);
const RigMainGrid* mainGrid = activeRiv->mainGrid();
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracCell, &i, &j, &k);
//End of code only for debugging...
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
cvf::Vec3d localX;
cvf::Vec3d localY;
cvf::Vec3d localZ;
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
bool isPlanIntersected = planeCellIntersectionPolygons(fracCell, planeCellPolygons, localX, localY, localZ);
if (!isPlanIntersected || planeCellPolygons.size()==0) continue;
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
@ -287,9 +282,11 @@ void RimFracture::computeTransmissibility()
}
}
//TODO: Make copy of z dir vector, we need it both in fracture coords and domain cords
localZ.transformVector(static_cast<cvf::Mat4d>(invertedTransMatrix));
cvf::Vec3d localZinFracPlane;
localZinFracPlane = localZ;
localZinFracPlane.transformVector(static_cast<cvf::Mat4d>(invertedTransMatrix));
cvf::Vec3d directionOfLength = cvf::Vec3d::ZERO;
directionOfLength.cross(localZinFracPlane, cvf::Vec3d(0, 0, 1));
RigFractureData fracData;
fracData.reservoirCellIndex = fracCell;
@ -301,13 +298,26 @@ void RimFracture::computeTransmissibility()
double areaOfCellPlaneFractureOverlap = 0.0;
std::vector<cvf::Vec3f> fracPolygon = attachedFractureDefinition()->fracturePolygon();
calculateFracturePlaneCellPolygonOverlapArea(planeCellPolygons, fracPolygon, areaOfCellPlaneFractureOverlap);
std::vector<std::vector<cvf::Vec3d> > clippedPolygons;
calculateFracturePlaneCellPolygonOverlapArea(planeCellPolygons, fracPolygon, clippedPolygons, areaOfCellPlaneFractureOverlap);
//TODO: get correct input values...
double fractureLength = 1.2345;
//TODO: FInd direction for length calculation (normal to z, in fracture plane)
double flowLength = 2.718281828;
double c = 0.008527; // TODO: Get value with units, is defined in RimReservoirCellResultsStorage
double fractureLength = 0.0;
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
//TODO: Should probably do some something more accurate here...
{
fractureLength += RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, clippedPolygon);
}
double c = 0.008527; // TODO: Get value with units, is defined in RimReservoirCellResultsStorage
//TODO: read permeability from file (should use matrix permeability and not fracture perm)...
transmissibility = 8 * c * attachedFractureDefinition()->permeability * areaOfCellPlaneFractureOverlap /
@ -390,7 +400,7 @@ bool RimFracture::planeCellIntersectionPolygons(size_t cellindex, std::vector<st
///
//--------------------------------------------------------------------------------------------------
void RimFracture::calculateFracturePlaneCellPolygonOverlapArea(std::vector<std::vector<cvf::Vec3d> > planeCellPolygons,
std::vector<cvf::Vec3f> fracturePolygon, double & areaOfCellPlaneFractureOverlap)
std::vector<cvf::Vec3f> fracturePolygon, std::vector<std::vector<cvf::Vec3d> > & clippedPolygons, double & areaOfCellPlaneFractureOverlap)
{
int polygonScaleFactor = 10000; //For transform to clipper int
int xInt, yInt;
@ -423,7 +433,7 @@ void RimFracture::calculateFracturePlaneCellPolygonOverlapArea(std::vector<std::
clpr.Execute(ClipperLib::ctIntersection, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd);
//Convert back to std::vector<std::vector<cvf::Vec3d> >
std::vector<std::vector<cvf::Vec3d> > clippedPolygons;
//std::vector<std::vector<cvf::Vec3d> > clippedPolygons;
for (ClipperLib::Path pathInSol : solution)
{
std::vector<cvf::Vec3d> clippedPolygon;

View File

@ -95,7 +95,7 @@ private:
bool planeCellIntersectionPolygons(size_t cellindex, std::vector<std::vector<cvf::Vec3d> > & polygons, cvf::Vec3d & localX, cvf::Vec3d & localY, cvf::Vec3d & localZ);
void calculateFracturePlaneCellPolygonOverlapArea(std::vector<std::vector<cvf::Vec3d> > planeCellPolygons,
std::vector<cvf::Vec3f> fracturePolygon, double & area);
std::vector<cvf::Vec3f> fracturePolygon, std::vector<std::vector<cvf::Vec3d> > & clippedPolygons, double & area);
protected:

View File

@ -23,6 +23,9 @@
#include "cafHexGridIntersectionTools/cafHexGridIntersectionTools.h"
#include "cvfBoundingBox.h"
#include "custom-clipper/clipper/clipper.hpp"
#include <vector>
//--------------------------------------------------------------------------------------------------
///
@ -186,26 +189,165 @@ void RigCellGeometryTools::findCellLocalXYZ(cvf::Vec3d * hexCorners, cvf::Vec3d
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCellGeometryTools::polygonAreaWeightedLength(cvf::Vec3d directionOfLength, std::vector<cvf::Vec3d> polygon2d)
double RigCellGeometryTools::polygonAreaWeightedLength(cvf::Vec3d directionOfLength, std::vector<cvf::Vec3d> polygonToCalcLengthOf)
{
//TODO: Check that polygon is in xy plane
//Find bounding box
cvf::BoundingBox polygonBBox;
for (cvf::Vec3d nodeCoord : polygon2d) polygonBBox.add(nodeCoord);
for (cvf::Vec3d nodeCoord : polygonToCalcLengthOf) polygonBBox.add(nodeCoord);
cvf::Vec3d bboxCorners[8];
polygonBBox.cornerVertices(bboxCorners);
//Split bounding box in multplie polygons (2D)
//Split bounding box in multiple polygons (2D)
int resolutionOfLengthCalc = 20;
cvf::Vec3d widthOfPolygon = polygonBBox.extent() / resolutionOfLengthCalc;
std::vector<double> areasOfPolygonContributions;
std::vector<double> lengthOfPolygonContributions;
//Use clipper to find overlap between bbpolygon and fracture
for (int i = 0; i < resolutionOfLengthCalc; i++)
{
//Doing the same thing twice, this part can be optimized...
std::pair<cvf::Vec3d, cvf::Vec3d> line1 = getLineThroughBoundingBox(directionOfLength, polygonBBox, bboxCorners[0] + widthOfPolygon*i);
std::pair<cvf::Vec3d, cvf::Vec3d> line2 = getLineThroughBoundingBox(directionOfLength, polygonBBox, bboxCorners[0] + widthOfPolygon*(i+1));
std::vector<cvf::Vec3d> polygon;
polygon.push_back(line1.first);
polygon.push_back(line1.second);
polygon.push_back(line2.second);
polygon.push_back(line2.first);
//Calculate length (max-min) and area
//Use clipper to find overlap between bbpolygon and fracture
std::vector<std::vector<cvf::Vec3d> > clippedPolygons = clipPolygons(polygonToCalcLengthOf, polygon);
//Calculate area-weighted average of above vectors.
double area = 0;
double length = 0;
cvf::Vec3d areaVector = cvf::Vec3d::ZERO;
//Calculate length (max-min) and area
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D(clippedPolygon);
area += areaVector.length();
length += getLengthOfPolygonAlongLine(line1, clippedPolygon); //For testing that parts of code fit together...
}
areasOfPolygonContributions.push_back(area);
lengthOfPolygonContributions.push_back(length);
}
//Calculate area-weighted length average.
double totalArea = 0.0;
double totalAreaXlength = 0.0;
for (int i = 0; i < areasOfPolygonContributions.size(); i++)
{
totalArea += areasOfPolygonContributions[i];
totalAreaXlength += (areasOfPolygonContributions[i] * lengthOfPolygonContributions[i]);
}
double areaWeightedLength = totalAreaXlength / totalArea;
return areaWeightedLength;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<cvf::Vec3d> > RigCellGeometryTools::clipPolygons(std::vector<cvf::Vec3d> polygon1, std::vector<cvf::Vec3d> polygon2)
{
int polygonScaleFactor = 10000; //For transform to clipper int
int xInt, yInt;
//Convert to int for clipper library and store as clipper "path"
ClipperLib::Path polygon1path;
for (cvf::Vec3d& v : polygon1)
{
xInt = v.x()*polygonScaleFactor;
yInt = v.y()*polygonScaleFactor;
polygon1path.push_back(ClipperLib::IntPoint(xInt, yInt));
}
ClipperLib::Path polygon2path;
for (cvf::Vec3d& v : polygon2)
{
xInt = v.x()*polygonScaleFactor;
yInt = v.y()*polygonScaleFactor;
polygon2path.push_back(ClipperLib::IntPoint(xInt, yInt));
}
ClipperLib::Clipper clpr;
clpr.AddPath(polygon1path, ClipperLib::ptSubject, true);
clpr.AddPath(polygon2path, ClipperLib::ptClip, true);
ClipperLib::Paths solution;
clpr.Execute(ClipperLib::ctIntersection, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd);
//Convert back to std::vector<std::vector<cvf::Vec3d> >
std::vector<std::vector<cvf::Vec3d> > clippedPolygons;
for (ClipperLib::Path pathInSol : solution)
{
std::vector<cvf::Vec3d> clippedPolygon;
for (ClipperLib::IntPoint IntPosition : pathInSol)
{
cvf::Vec3d v = cvf::Vec3d::ZERO;
v.x() = (float)IntPosition.X / (float)polygonScaleFactor;
v.y() = (float)IntPosition.Y / (float)polygonScaleFactor;
clippedPolygon.push_back(v);
}
clippedPolygons.push_back(clippedPolygon);
}
return clippedPolygons;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<cvf::Vec3d, cvf::Vec3d> RigCellGeometryTools::getLineThroughBoundingBox(cvf::Vec3d lineDirection, cvf::BoundingBox polygonBBox, cvf::Vec3d pointOnLine)
{
cvf::Vec3d bboxCorners[8];
polygonBBox.cornerVertices(bboxCorners);
cvf::Vec3d startPoint = pointOnLine;
cvf::Vec3d endPoint = pointOnLine;
//To avoid doing many iterations in loops below linedirection should be quite large.
lineDirection.normalize();
lineDirection = lineDirection * polygonBBox.extent().length() / 5;
//Extend line in positive direction
while (polygonBBox.contains(startPoint))
{
startPoint = startPoint + lineDirection;
}
//Extend line in negative direction
while (polygonBBox.contains(endPoint))
{
endPoint = endPoint - lineDirection;
}
std::pair<cvf::Vec3d, cvf::Vec3d> line;
line = { startPoint, endPoint };
return line;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigCellGeometryTools::getLengthOfPolygonAlongLine(std::pair<cvf::Vec3d, cvf::Vec3d> line, std::vector<cvf::Vec3d> polygon)
{
cvf::BoundingBox lineBoundingBox;
std::vector<cvf::Vec3d> pointsOnLine;
for (cvf::Vec3d polygonPoint : polygon)
{
cvf::Vec3d pointOnLine = cvf::GeometryTools::projectPointOnLine(line.first, line.second, polygonPoint, nullptr);
lineBoundingBox.add(pointOnLine);
}
double length = lineBoundingBox.extent().length();
return length;
}

View File

@ -21,9 +21,11 @@
#include "cvfBase.h"
#include "cvfVector3.h"
#include "cvfBoundingBox.h"
#include "cvfPlane.h"
#include <list>
#include <vector>
@ -39,5 +41,11 @@ public:
static void findCellLocalXYZ(cvf::Vec3d * hexCorners, cvf::Vec3d &localXdirection, cvf::Vec3d &localYdirection, cvf::Vec3d &localZdirection);
static void polygonAreaWeightedLength(cvf::Vec3d directionOfLength, std::vector<cvf::Vec3d> polygon2d);
static double polygonAreaWeightedLength(cvf::Vec3d directionOfLength, std::vector<cvf::Vec3d> polygon2d);
static std::vector<std::vector<cvf::Vec3d> > clipPolygons(std::vector<cvf::Vec3d> polygon1, std::vector<cvf::Vec3d> polygon2);
static std::pair<cvf::Vec3d, cvf::Vec3d> getLineThroughBoundingBox(cvf::Vec3d lineDirection, cvf::BoundingBox polygonBBox, cvf::Vec3d pointOnLine);
static double getLengthOfPolygonAlongLine(std::pair<cvf::Vec3d, cvf::Vec3d> line, std::vector<cvf::Vec3d> polygon);
};

View File

@ -143,3 +143,51 @@ TEST(RigCellGeometryTools, findCellAverageZTest)
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST(RigCellGeometryTools, lengthCalcTest)
{
std::vector<cvf::Vec3d> polygonExample;
polygonExample.push_back(cvf::Vec3d(0.00, 0.00, 0.0));
polygonExample.push_back(cvf::Vec3d(0.00, 2.50, 0.0));
polygonExample.push_back(cvf::Vec3d(1.50, 2.50, 0.0));
polygonExample.push_back(cvf::Vec3d(1.50, 0.00, 0.0));
// polygonExample.push_back(cvf::Vec3d(0.00, 0.50, 0.0));
// polygonExample.push_back(cvf::Vec3d(-7.73, 0.48, 0.0));
// polygonExample.push_back(cvf::Vec3d(-14.69, 0.40, 0.0));
// polygonExample.push_back(cvf::Vec3d(-20.23, 0.29, 0.0));
// polygonExample.push_back(cvf::Vec3d(-23.78, 0.15, 0.0));
// polygonExample.push_back(cvf::Vec3d(-25.00, 0.00, 0.0));
// polygonExample.push_back(cvf::Vec3d(-23.78, -0.15, 0.0));
// polygonExample.push_back(cvf::Vec3d(-20.23, -0.29, 0.0));
// polygonExample.push_back(cvf::Vec3d(-14.69, -0.40, 0.0));
// polygonExample.push_back(cvf::Vec3d(-7.73, -0.48, 0.0));
// polygonExample.push_back(cvf::Vec3d(0.00, -0.50, 0.0));
// polygonExample.push_back(cvf::Vec3d(7.73, -0.48, 0.0));
// polygonExample.push_back(cvf::Vec3d(14.69, -0.40, 0.0));
// polygonExample.push_back(cvf::Vec3d(20.23, -0.29, 0.0));
// polygonExample.push_back(cvf::Vec3d(23.78, -0.15, 0.0));
// polygonExample.push_back(cvf::Vec3d(25.00, 0.00, 0.0));
// polygonExample.push_back(cvf::Vec3d(23.78, 0.15, 0.0));
// polygonExample.push_back(cvf::Vec3d(20.23, 0.29, 0.0));
// polygonExample.push_back(cvf::Vec3d(14.69, 0.40, 0.0));
// polygonExample.push_back(cvf::Vec3d(7.73, 0.48, 0.0));
// polygonExample.push_back(cvf::Vec3d(0.00, 0.50, 0.0));
double length = 0.0;
cvf::Vec3d directionOfLength = cvf::Vec3d::ZERO;
directionOfLength = cvf::Vec3d(1, 0, 0);
length = RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, polygonExample);
EXPECT_DOUBLE_EQ(length, 1.5);
directionOfLength = cvf::Vec3d(0, 1, 0);
length = RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, polygonExample);
EXPECT_DOUBLE_EQ(length, 2.5);
}