mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-25 18:55:39 -06:00
Clean up 3D well log generator code. Renamed Grid -> DrawSurface and fixed spelling.
This commit is contained in:
@@ -0,0 +1,377 @@
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (C) 2018- Statoil ASA
|
||||
//
|
||||
// ResInsight is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
||||
// for more details.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "Riv3dWellLogCurveGeometryGenerator.h"
|
||||
|
||||
#include "RimWellPath.h"
|
||||
#include "RimWellPathCollection.h"
|
||||
|
||||
#include "RigCurveDataTools.h"
|
||||
#include "RigWellPath.h"
|
||||
#include "RigWellPathGeometryTools.h"
|
||||
|
||||
#include "cafLine.h"
|
||||
#include "cafDisplayCoordTransform.h"
|
||||
#include "cvfPrimitiveSetIndexedUInt.h"
|
||||
|
||||
#include "cvfBoundingBox.h"
|
||||
#include "cvfMath.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
Riv3dWellLogCurveGeometryGenerator::Riv3dWellLogCurveGeometryGenerator(RimWellPath* wellPath)
|
||||
: m_wellPath(wellPath)
|
||||
, m_planeWidth(0.0)
|
||||
{
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void Riv3dWellLogCurveGeometryGenerator::createCurveDrawables(const caf::DisplayCoordTransform* displayCoordTransform,
|
||||
const cvf::BoundingBox& wellPathClipBoundingBox,
|
||||
const Rim3dWellLogCurve* rim3dWellLogCurve,
|
||||
double planeOffsetFromWellPathCenter,
|
||||
double planeWidth,
|
||||
const std::vector<cvf::Vec3f>& drawSurfaceVertices)
|
||||
{
|
||||
// Make sure all drawables are cleared in case we return early to avoid a
|
||||
// previous drawable being "stuck" when changing result type.
|
||||
clearCurvePointsAndGeometry();
|
||||
|
||||
std::vector<double> resultValues;
|
||||
std::vector<double> resultMds;
|
||||
rim3dWellLogCurve->curveValuesAndMds(&resultValues, &resultMds);
|
||||
|
||||
m_planeWidth = planeWidth;
|
||||
|
||||
if (!wellPathGeometry()) return;
|
||||
if (wellPathGeometry()->m_wellPathPoints.empty()) return;
|
||||
if (!wellPathClipBoundingBox.isValid()) return;
|
||||
|
||||
if (resultValues.empty()) return;
|
||||
CVF_ASSERT(resultValues.size() == resultMds.size());
|
||||
|
||||
if (rim3dWellLogCurve->maxCurveValue() - rim3dWellLogCurve->minCurveValue() < 1.0e-6)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
RimWellPathCollection* wellPathCollection = nullptr;
|
||||
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
|
||||
|
||||
cvf::Vec3d clipLocation = wellPathGeometry()->m_wellPathPoints.front();
|
||||
if (wellPathCollection->wellPathClip)
|
||||
{
|
||||
double clipZDistance = wellPathCollection->wellPathClipZDistance;
|
||||
clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
|
||||
}
|
||||
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
|
||||
|
||||
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
|
||||
for (cvf::Vec3d& wellPathPoint : wellPathPoints)
|
||||
{
|
||||
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
|
||||
}
|
||||
|
||||
std::vector<cvf::Vec3d> wellPathCurveNormals =
|
||||
RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, rim3dWellLogCurve->drawPlaneAngle());
|
||||
|
||||
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
|
||||
std::vector<cvf::Vec3d> interpolatedCurveNormals;
|
||||
// Iterate from bottom of well path and up to be able to stop at given Z max clipping height
|
||||
for (auto md = resultMds.rbegin(); md != resultMds.rend(); md++)
|
||||
{
|
||||
cvf::Vec3d point = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathPoints, *md);
|
||||
cvf::Vec3d normal = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathCurveNormals, *md);
|
||||
if (point.z() > clipLocation.z()) break;
|
||||
|
||||
interpolatedWellPathPoints.push_back(point);
|
||||
interpolatedCurveNormals.push_back(normal.getNormalized());
|
||||
}
|
||||
if (interpolatedWellPathPoints.empty()) return;
|
||||
|
||||
// Reverse list, since it was filled in the opposite order
|
||||
std::reverse(interpolatedWellPathPoints.begin(), interpolatedWellPathPoints.end());
|
||||
std::reverse(interpolatedCurveNormals.begin(), interpolatedCurveNormals.end());
|
||||
|
||||
// The result values for the part of the well which is not clipped off, matching interpolatedWellPathPoints size
|
||||
m_curveValues = std::vector<double>(resultValues.end() - interpolatedWellPathPoints.size(), resultValues.end());
|
||||
m_curveMeasuredDepths = std::vector<double>(resultMds.end() - interpolatedWellPathPoints.size(), resultMds.end());
|
||||
|
||||
double maxClampedResult = -HUGE_VAL;
|
||||
double minClampedResult = HUGE_VAL;
|
||||
|
||||
for (double& result : m_curveValues)
|
||||
{
|
||||
if (!RigCurveDataTools::isValidValue(result, false)) continue;
|
||||
|
||||
result = cvf::Math::clamp(result, rim3dWellLogCurve->minCurveValue(), rim3dWellLogCurve->maxCurveValue());
|
||||
|
||||
maxClampedResult = std::max(result, maxClampedResult);
|
||||
minClampedResult = std::min(result, minClampedResult);
|
||||
}
|
||||
|
||||
if (minClampedResult >= maxClampedResult)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_curveVertices = std::vector<cvf::Vec3f>();
|
||||
m_curveVertices.reserve(interpolatedWellPathPoints.size());
|
||||
|
||||
double plotRangeToResultRangeFactor = planeWidth / (maxClampedResult - minClampedResult);
|
||||
|
||||
for (size_t i = 0; i < interpolatedWellPathPoints.size(); i++)
|
||||
{
|
||||
double scaledResult = 0;
|
||||
|
||||
if (RigCurveDataTools::isValidValue(m_curveValues[i], false))
|
||||
{
|
||||
scaledResult = planeOffsetFromWellPathCenter + (m_curveValues[i] - minClampedResult) * plotRangeToResultRangeFactor;
|
||||
}
|
||||
cvf::Vec3d curvePoint(interpolatedWellPathPoints[i] + scaledResult * interpolatedCurveNormals[i]);
|
||||
m_curveVertices.push_back(cvf::Vec3f(curvePoint));
|
||||
}
|
||||
|
||||
createNewVerticesAlongTriangleEdges(drawSurfaceVertices);
|
||||
projectVerticesOntoTriangles(drawSurfaceVertices);
|
||||
|
||||
|
||||
std::vector<cvf::uint> indices;
|
||||
indices.reserve(m_curveVertices.size() * 2);
|
||||
for (size_t i = 0; i < m_curveVertices.size() - 1; ++i)
|
||||
{
|
||||
indices.push_back(cvf::uint(i));
|
||||
indices.push_back(cvf::uint(i + 1));
|
||||
}
|
||||
|
||||
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
|
||||
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(indices);
|
||||
|
||||
m_curveDrawable = new cvf::DrawableGeo();
|
||||
|
||||
indexedUInt->setIndices(indexArray.p());
|
||||
m_curveDrawable->addPrimitiveSet(indexedUInt.p());
|
||||
|
||||
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_curveVertices);
|
||||
m_curveDrawable->setVertexArray(vertexArray.p());
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void Riv3dWellLogCurveGeometryGenerator::clearCurvePointsAndGeometry()
|
||||
{
|
||||
m_curveDrawable = nullptr;
|
||||
m_curveVertices.clear();
|
||||
m_curveMeasuredDepths.clear();
|
||||
m_curveValues.clear();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
cvf::ref<cvf::DrawableGeo> Riv3dWellLogCurveGeometryGenerator::curveDrawable()
|
||||
{
|
||||
return m_curveDrawable;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
const RigWellPath* Riv3dWellLogCurveGeometryGenerator::wellPathGeometry() const
|
||||
{
|
||||
return m_wellPath->wellPathGeometry();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
bool Riv3dWellLogCurveGeometryGenerator::findClosestPointOnCurve(const cvf::Vec3d& globalIntersection,
|
||||
cvf::Vec3d* closestPoint,
|
||||
double* measuredDepthAtPoint,
|
||||
double* valueAtClosestPoint) const
|
||||
{
|
||||
cvf::Vec3f globalIntersectionFloat(globalIntersection);
|
||||
float closestDistance = m_planeWidth * 0.1;
|
||||
*closestPoint = cvf::Vec3d::UNDEFINED;
|
||||
*measuredDepthAtPoint = cvf::UNDEFINED_DOUBLE;
|
||||
*valueAtClosestPoint = cvf::UNDEFINED_DOUBLE;
|
||||
if (m_curveVertices.size() < 2u) false;
|
||||
CVF_ASSERT(m_curveVertices.size() == m_curveValues.size());
|
||||
for (size_t i = 1; i < m_curveVertices.size(); ++i)
|
||||
{
|
||||
bool validCurveSegment = RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
|
||||
RigCurveDataTools::isValidValue(m_curveValues[i - 1], false);
|
||||
if (validCurveSegment)
|
||||
{
|
||||
cvf::Vec3f a = m_curveVertices[i - 1];
|
||||
cvf::Vec3f b = m_curveVertices[i];
|
||||
cvf::Vec3f ap = globalIntersectionFloat - a;
|
||||
cvf::Vec3f ab = b - a;
|
||||
// Projected point is clamped to one of the end points of the segment.
|
||||
float distanceToProjectedPointAlongAB = ap * ab / (ab * ab);
|
||||
float clampedDistance = cvf::Math::clamp(distanceToProjectedPointAlongAB, 0.0f, 1.0f);
|
||||
cvf::Vec3f projectionOfGlobalIntersection = a + clampedDistance * ab;
|
||||
float distance = (projectionOfGlobalIntersection - globalIntersectionFloat).length();
|
||||
if (distance < closestDistance)
|
||||
{
|
||||
*closestPoint = cvf::Vec3d(projectionOfGlobalIntersection);
|
||||
closestDistance = distance;
|
||||
*measuredDepthAtPoint =
|
||||
m_curveMeasuredDepths[i - 1] * (1.0f - clampedDistance) + m_curveMeasuredDepths[i] * clampedDistance;
|
||||
*valueAtClosestPoint = m_curveValues[i - 1] * (1.0f - clampedDistance) + m_curveValues[i] * clampedDistance;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (closestPoint->isUndefined()) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongTriangleEdges(const std::vector<cvf::Vec3f>& drawSurfaceVertices)
|
||||
{
|
||||
std::vector<cvf::Vec3f> expandedCurveVertices;
|
||||
std::vector<double> expandedMeasuredDepths;
|
||||
std::vector<double> expandedValues;
|
||||
size_t estimatedNumberOfPoints = m_curveVertices.size() + drawSurfaceVertices.size();
|
||||
expandedCurveVertices.reserve(estimatedNumberOfPoints);
|
||||
expandedMeasuredDepths.reserve(estimatedNumberOfPoints);
|
||||
expandedValues.reserve(estimatedNumberOfPoints);
|
||||
for (size_t i = 0; i < m_curveVertices.size() - 1; i += 2)
|
||||
{
|
||||
if (RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
|
||||
RigCurveDataTools::isValidValue(m_curveValues[i + 1], false))
|
||||
{
|
||||
expandedCurveVertices.push_back(m_curveVertices[i]);
|
||||
expandedMeasuredDepths.push_back(m_curveMeasuredDepths[i]);
|
||||
expandedValues.push_back(m_curveValues[i]);
|
||||
// Find segments that intersects the triangle edge
|
||||
caf::Line<float> curveLine(m_curveVertices[i], m_curveVertices[i + 1]);
|
||||
|
||||
for (size_t j = 0; j < drawSurfaceVertices.size() - 1; ++j)
|
||||
{
|
||||
caf::Line<float> drawSurfaceLine(drawSurfaceVertices[j], drawSurfaceVertices[j + 1]);
|
||||
bool withinSegments = false;
|
||||
caf::Line<float> connectingLine = curveLine.findLineBetweenNearestPoints(drawSurfaceLine, &withinSegments);
|
||||
|
||||
if (withinSegments)
|
||||
{
|
||||
cvf::Vec3f closestDrawSurfacePoint = connectingLine.end();
|
||||
double measuredDepth;
|
||||
double valueAtPoint;
|
||||
cvf::Vec3d closestPoint(closestDrawSurfacePoint);
|
||||
cvf::Vec3d dummyArgument;
|
||||
// Interpolate measured depth and value
|
||||
bool worked = findClosestPointOnCurve(closestPoint, &dummyArgument, &measuredDepth, &valueAtPoint);
|
||||
if (worked)
|
||||
{
|
||||
expandedCurveVertices.push_back(closestDrawSurfacePoint);
|
||||
expandedMeasuredDepths.push_back(measuredDepth);
|
||||
expandedValues.push_back(valueAtPoint);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Next original segment point
|
||||
expandedCurveVertices.push_back(m_curveVertices[i + 1]);
|
||||
expandedMeasuredDepths.push_back(m_curveMeasuredDepths[i + 1]);
|
||||
expandedValues.push_back(m_curveValues[i + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
m_curveVertices.swap(expandedCurveVertices);
|
||||
m_curveMeasuredDepths.swap(expandedMeasuredDepths);
|
||||
m_curveValues.swap(expandedValues);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
void Riv3dWellLogCurveGeometryGenerator::projectVerticesOntoTriangles(const std::vector<cvf::Vec3f>& drawSurfaceVertices)
|
||||
{
|
||||
for (size_t i = 0; i < m_curveVertices.size(); ++i)
|
||||
{
|
||||
for (size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1)
|
||||
{
|
||||
cvf::Vec3f triangleVertex1, triangleVertex2, triangleVertex3;
|
||||
if (j % 2 == 0)
|
||||
{
|
||||
triangleVertex1 = drawSurfaceVertices[j];
|
||||
triangleVertex2 = drawSurfaceVertices[j + 1];
|
||||
triangleVertex3 = drawSurfaceVertices[j + 2];
|
||||
}
|
||||
else
|
||||
{
|
||||
triangleVertex1 = drawSurfaceVertices[j];
|
||||
triangleVertex2 = drawSurfaceVertices[j + 2];
|
||||
triangleVertex3 = drawSurfaceVertices[j + 1];
|
||||
}
|
||||
|
||||
bool wasInsideTriangle = false;
|
||||
cvf::Vec3f projectedPoint = projectPointOntoTriangle(
|
||||
m_curveVertices[i], triangleVertex1, triangleVertex2, triangleVertex3, &wasInsideTriangle);
|
||||
if (wasInsideTriangle)
|
||||
{
|
||||
m_curveVertices[i] = projectedPoint;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
///
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
cvf::Vec3f Riv3dWellLogCurveGeometryGenerator::projectPointOntoTriangle(const cvf::Vec3f& point,
|
||||
const cvf::Vec3f& triangleVertex1,
|
||||
const cvf::Vec3f& triangleVertex2,
|
||||
const cvf::Vec3f& triangleVertex3,
|
||||
bool* wasInsideTriangle)
|
||||
{
|
||||
*wasInsideTriangle = false;
|
||||
cvf::Vec3f e1 = triangleVertex2 - triangleVertex1;
|
||||
cvf::Vec3f e2 = triangleVertex3 - triangleVertex1;
|
||||
cvf::Vec3f n = (e1.getNormalized() ^ e2.getNormalized()).getNormalized();
|
||||
|
||||
// Project vertex onto triangle plane
|
||||
cvf::Vec3f av = point - triangleVertex1;
|
||||
cvf::Vec3f projectedPoint = point - (av * n) * n;
|
||||
|
||||
// Calculate barycentric coordinates
|
||||
float areaABC = n * (e1 ^ e2);
|
||||
float areaPBC = n * ((triangleVertex2 - projectedPoint) ^ (triangleVertex3 - projectedPoint));
|
||||
float areaPCA = n * ((triangleVertex3 - projectedPoint) ^ (triangleVertex1 - projectedPoint));
|
||||
float u = areaPBC / areaABC;
|
||||
float v = areaPCA / areaABC;
|
||||
float w = 1.0 - u - v;
|
||||
|
||||
if (u >= 0.0 && v >= 0.0 && w >= 0.0)
|
||||
{
|
||||
*wasInsideTriangle = true;
|
||||
}
|
||||
return projectedPoint;
|
||||
}
|
||||
Reference in New Issue
Block a user