#7559 Adaptive meshing in y direction.

This commit is contained in:
Kristian Bendiksen 2021-04-14 21:16:49 +02:00
parent b69acb80f3
commit cae5e1062f
4 changed files with 496 additions and 49 deletions

View File

@ -19,8 +19,11 @@
#include "RimEnsembleFractureStatistics.h"
#include "RiaDefines.h"
#include "RiaInterpolationTools.h"
#include "RiaLogging.h"
#include "RiaPreferences.h"
#include "RiaWeightedGeometricMeanCalculator.h"
#include "RiaWeightedHarmonicMeanCalculator.h"
#include "RigFractureGrid.h"
#include "RigSlice2D.h"
@ -63,9 +66,30 @@ void caf::AppEnum<RimEnsembleFractureStatistics::MeshType>::setUp()
{
addItem( RimEnsembleFractureStatistics::MeshType::ADAPTIVE, "ADAPTIVE", "Adaptive" );
addItem( RimEnsembleFractureStatistics::MeshType::UNIFORM, "UNIFORM", "Uniform" );
addItem( RimEnsembleFractureStatistics::MeshType::NAIVE, "NAIVE", "Naive" );
setDefault( RimEnsembleFractureStatistics::MeshType::ADAPTIVE );
}
template <>
void caf::AppEnum<RimEnsembleFractureStatistics::MeanType>::setUp()
{
addItem( RimEnsembleFractureStatistics::MeanType::HARMONIC, "HARMONIC", "Harmonic" );
addItem( RimEnsembleFractureStatistics::MeanType::ARITHMETIC, "ARITHMETIC", "Artihmetic" );
addItem( RimEnsembleFractureStatistics::MeanType::GEOMETRIC, "GEOMETRIC", "Geometric" );
addItem( RimEnsembleFractureStatistics::MeanType::MINIMUM, "MINIMUM", "Minimum" );
setDefault( RimEnsembleFractureStatistics::MeanType::HARMONIC );
}
template <>
void caf::AppEnum<RimEnsembleFractureStatistics::AdaptiveSamplingSizeType>::setUp()
{
addItem( RimEnsembleFractureStatistics::AdaptiveSamplingSizeType::AVERAGE, "AVERAGE", "Average" );
addItem( RimEnsembleFractureStatistics::AdaptiveSamplingSizeType::MINIMUM, "MINIMUM", "Minimum" );
addItem( RimEnsembleFractureStatistics::AdaptiveSamplingSizeType::MAXIMUM, "MAXIMUM", "Maximum" );
addItem( RimEnsembleFractureStatistics::AdaptiveSamplingSizeType::USER_DEFINED, "USER_DEFINED", "User-Defined" );
setDefault( RimEnsembleFractureStatistics::AdaptiveSamplingSizeType::AVERAGE );
}
} // namespace caf
CAF_PDM_SOURCE_INIT( RimEnsembleFractureStatistics, "EnsembleFractureStatistics" );
@ -86,9 +110,16 @@ RimEnsembleFractureStatistics::RimEnsembleFractureStatistics()
m_filePathsTable.xmlCapability()->disableIO();
CAF_PDM_InitFieldNoDefault( &m_meshType, "MeshType", "Mesh Type", "", "", "" );
// Uniform sampling
CAF_PDM_InitField( &m_numSamplesX, "NumberOfSamplesX", 100, "X", "", "", "" );
CAF_PDM_InitField( &m_numSamplesY, "NumberOfSamplesY", 200, "Y", "", "", "" );
// Adaptive sampling
CAF_PDM_InitFieldNoDefault( &m_adaptiveMeanType, "AdaptiveMeanType", "Mean Type", "", "", "" );
CAF_PDM_InitFieldNoDefault( &m_adaptiveSamplingSizeType, "AdaptiveSamplingSizeType", "Sampling Type", "", "", "" );
CAF_PDM_InitField( &m_adaptiveNumSamplesY, "AdaptiveNumSamplesY", 30, "Number of Samples Y", "", "", "" );
std::vector<caf::AppEnum<RimEnsembleFractureStatistics::StatisticsType>> defaultStatisticsTypes = {
caf::AppEnum<RimEnsembleFractureStatistics::StatisticsType>( RimEnsembleFractureStatistics::StatisticsType::MEAN ) };
@ -213,6 +244,17 @@ void RimEnsembleFractureStatistics::defineUiOrdering( QString uiConfigName, caf:
m_numSamplesX.uiCapability()->setUiHidden( !isUniformMesh );
m_numSamplesY.uiCapability()->setUiHidden( !isUniformMesh );
uiOrdering.add( &m_adaptiveMeanType );
uiOrdering.add( &m_adaptiveSamplingSizeType );
uiOrdering.add( &m_adaptiveNumSamplesY );
bool isAdaptiveMesh = m_meshType() == MeshType::ADAPTIVE;
m_adaptiveMeanType.uiCapability()->setUiHidden( !isAdaptiveMesh );
m_adaptiveSamplingSizeType.uiCapability()->setUiHidden( !isAdaptiveMesh );
bool adaptiveSamplesUserDefined = m_adaptiveSamplingSizeType() == AdaptiveSamplingSizeType::USER_DEFINED;
m_adaptiveNumSamplesY.uiCapability()->setUiHidden( !isAdaptiveMesh || !adaptiveSamplesUserDefined );
uiOrdering.add( &m_selectedStatisticsType );
uiOrdering.add( &m_computeStatistics );
}
@ -253,6 +295,9 @@ std::vector<QString> RimEnsembleFractureStatistics::computeStatistics()
std::vector<double> gridXs;
std::vector<double> gridYs;
auto [minX, maxX, minY, maxY] = findSamplingIntervals( stimPlanFractureDefinitions, gridXs, gridYs );
RiaLogging::info(
QString( "Ensemble Fracture Size: X = [%1, %2] Y = [%3, %4]" ).arg( minX ).arg( maxX ).arg( minY ).arg( maxY ) );
for ( auto result : availableResults )
{
@ -261,41 +306,6 @@ std::vector<QString> RimEnsembleFractureStatistics::computeStatistics()
std::vector<cvf::cref<RigFractureGrid>> fractureGrids =
createFractureGrids( stimPlanFractureDefinitions, unitSystem, result.first );
auto [minX, maxX, minY, maxY] = findExtentsOfGrids( fractureGrids );
RiaLogging::info(
QString( "Ensemble Fracture Size: X = [%1, %2] Y = [%3, %4]" ).arg( minX ).arg( maxX ).arg( minY ).arg( maxY ) );
if ( m_meshType() == MeshType::UNIFORM )
{
gridXs.clear();
gridYs.clear();
int numSamplesX = m_numSamplesX();
int numSamplesY = m_numSamplesY();
double sampleDistanceX = ( maxX - minX ) / numSamplesX;
double sampleDistanceY = ( maxY - minY ) / numSamplesY;
RiaLogging::info(
QString( "Uniform Mesh. Output size: %1x%2. Sampling Distance X = %3 Sampling Distance Y = %4" )
.arg( numSamplesX )
.arg( numSamplesY )
.arg( sampleDistanceX )
.arg( sampleDistanceY ) );
for ( int y = 0; y < numSamplesY; y++ )
{
double posY = minY + y * sampleDistanceY + sampleDistanceY * 0.5;
gridYs.push_back( posY );
}
for ( int x = 0; x < numSamplesX; x++ )
{
double posX = minX + x * sampleDistanceX + sampleDistanceX * 0.5;
gridXs.push_back( posX );
}
}
std::vector<std::vector<double>> samples( gridXs.size() * gridYs.size() );
sampleAllGrids( fractureGrids, gridXs, gridYs, samples );
@ -452,32 +462,377 @@ std::vector<cvf::cref<RigFractureGrid>> RimEnsembleFractureStatistics::createFra
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::tuple<double, double, double, double>
RimEnsembleFractureStatistics::findExtentsOfGrids( const std::vector<cvf::cref<RigFractureGrid>>& fractureGrids )
std::tuple<double, double, double, double> RimEnsembleFractureStatistics::findSamplingIntervals(
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const
{
// Find min and max extent of all the grids
auto [minX, maxX, minY, maxY] = findMaxGridExtents( stimPlanFractureDefinitions );
if ( m_meshType() == MeshType::UNIFORM )
{
generateUniformMesh( minX, maxX, minY, maxY, gridXs, gridYs );
}
else if ( m_meshType() == MeshType::NAIVE )
{
generateNaiveMesh( minX, maxX, minY, maxY, stimPlanFractureDefinitions, gridXs, gridYs );
}
else if ( m_meshType() == MeshType::ADAPTIVE )
{
generateAdaptiveMesh( minX, maxX, minY, maxY, stimPlanFractureDefinitions, gridXs, gridYs );
}
return std::make_tuple( minX, maxX, minY, maxY );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::tuple<double, double, double, double> RimEnsembleFractureStatistics::findMaxGridExtents(
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions )
{
double minX = std::numeric_limits<double>::max();
double maxX = -std::numeric_limits<double>::max();
double minY = std::numeric_limits<double>::max();
double maxY = -std::numeric_limits<double>::max();
for ( auto fractureGrid : fractureGrids )
for ( auto def : stimPlanFractureDefinitions )
{
for ( auto fractureCell : fractureGrid->fractureCells() )
{
for ( auto polygon : fractureCell.getPolygon() )
{
minX = std::min( minX, polygon.x() );
maxX = std::max( maxX, polygon.x() );
minY = std::min( minY, polygon.y() );
maxY = std::max( maxY, polygon.y() );
}
}
minX = std::min( minX, def->xs().front() );
maxX = std::max( maxX, def->xs().back() );
double offset = computeDepthOfWellPathAtFracture( def );
minY = std::min( minY, offset + def->ys().back() );
maxY = std::max( maxY, offset + def->ys().front() );
}
return std::make_tuple( minX, maxX, minY, maxY );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEnsembleFractureStatistics::generateUniformMesh( double minX,
double maxX,
double minY,
double maxY,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const
{
int numSamplesX = m_numSamplesX();
double sampleDistanceX = linearSampling( minX, maxX, numSamplesX, gridXs );
int numSamplesY = m_numSamplesY();
double sampleDistanceY = linearSampling( minY, maxY, numSamplesY, gridYs );
RiaLogging::info( QString( "Uniform Mesh. Output size: %1x%2. Sampling Distance X = %3 Sampling Distance Y = %4" )
.arg( numSamplesX )
.arg( numSamplesY )
.arg( sampleDistanceX )
.arg( sampleDistanceY ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEnsembleFractureStatistics::generateNaiveMesh(
double minX,
double maxX,
double minY,
double maxY,
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const
{
// Find max number of cells in x direction
int maxNx = 0;
for ( auto def : stimPlanFractureDefinitions )
{
maxNx = std::max( maxNx, static_cast<int>( def->xs().size() ) );
}
// Do linear sampling in x drection
linearSampling( minX, maxX, maxNx, gridXs );
std::vector<double> depths;
for ( auto def : stimPlanFractureDefinitions )
{
double offset = computeDepthOfWellPathAtFracture( def );
for ( double y : def->ys() )
{
depths.push_back( offset + y );
}
}
std::sort( depths.begin(), depths.end() );
gridYs = depths;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEnsembleFractureStatistics::generateAdaptiveMesh(
double minX,
double maxX,
double minY,
double maxY,
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const
{
// Find max number of cells in x direction
int maxNx = 0;
for ( auto def : stimPlanFractureDefinitions )
{
maxNx = std::max( maxNx, static_cast<int>( def->xs().size() ) );
}
// Do linear sampling in x drection
linearSampling( minX, maxX, maxNx, gridXs );
std::vector<Layer> layers;
generateAllLayers( stimPlanFractureDefinitions, layers );
const int targetNumLayers = getTargetNumberOfLayers( stimPlanFractureDefinitions );
// Group the layers into linearly spaced bins
double totalDepth = maxY - minY;
double binSize = totalDepth / targetNumLayers;
RiaLogging::info(
QString( "Adaptive mesh. Number of layers: %1. Layer thickness: %2" ).arg( targetNumLayers ).arg( binSize ) );
int nTotalMatches = 0;
std::vector<double> baseDepth;
baseDepth.push_back( minY );
std::vector<double> means;
double sumMeans = 0.0;
// Calculate
for ( int layerNo = 0; layerNo < targetNumLayers; layerNo++ )
{
double binTopDepth = minY + layerNo * binSize;
double binBottomDepth = minY + ( layerNo + 1 ) * binSize;
baseDepth.push_back( binBottomDepth );
RiaWeightedHarmonicMeanCalculator harmonicMeanCalculator;
RiaWeightedGeometricMeanCalculator geometricMeanCalculator;
double sum = 0.0;
double nMatches = 0;
double minThickness = std::numeric_limits<double>::max();
for ( Layer layer : layers )
{
// TODO: top and bottom is mixed up here (again!)
if ( layer.centerDepth() > binTopDepth && layer.centerDepth() <= binBottomDepth )
{
harmonicMeanCalculator.addValueAndWeight( layer.thickness(), 1.0 );
geometricMeanCalculator.addValueAndWeight( layer.thickness(), 1.0 );
minThickness = std::min( minThickness, layer.thickness() );
sum += layer.thickness();
nMatches++;
nTotalMatches++;
}
}
double arithmeticMean = 0.0;
if ( nMatches > 0 ) arithmeticMean = sum / nMatches;
double harmonicMean = harmonicMeanCalculator.weightedMean();
double geometricMean = geometricMeanCalculator.weightedMean();
RiaLogging::info( QString( "Binning layer #%1: [%2 - %3] n=%4 means: A=%5 H=%6 G=%7" )
.arg( layerNo )
.arg( binTopDepth )
.arg( binBottomDepth )
.arg( nMatches )
.arg( arithmeticMean )
.arg( harmonicMean )
.arg( geometricMean ) );
double mean = std::numeric_limits<double>::infinity();
if ( m_adaptiveMeanType() == MeanType::HARMONIC )
{
mean = harmonicMean;
}
else if ( m_adaptiveMeanType() == MeanType::ARITHMETIC )
{
mean = arithmeticMean;
}
else if ( m_adaptiveMeanType() == MeanType::GEOMETRIC )
{
mean = geometricMean;
}
else
{
CAF_ASSERT( m_adaptiveMeanType() == MeanType::MINIMUM );
mean = minThickness;
}
means.push_back( mean );
sumMeans += mean;
}
RiaLogging::info( QString( "Total matches: %1 (expected: %2)" ).arg( nTotalMatches ).arg( layers.size() ) );
double totalThickness = totalDepth;
std::vector<double> scaledMeans;
double sumScaledMean = 0.0;
for ( double mean : means )
{
double scaledMean = binSize / mean;
scaledMeans.push_back( scaledMean );
sumScaledMean += scaledMean;
}
RiaLogging::info( QString( "Total thickness: %1 Sum scaled mean: %2" ).arg( totalThickness ).arg( sumScaledMean ) );
std::vector<double> AM;
AM.push_back( 0.0 );
double sumAI = 0.0;
for ( int layerNo = 0; layerNo < targetNumLayers; layerNo++ )
{
double AI = scaledMeans[layerNo] * targetNumLayers / sumScaledMean;
sumAI += AI;
AM.push_back( sumAI );
}
auto findSmallerIndex = []( double value, const std::vector<double>& vec ) {
for ( size_t i = 0; i < vec.size(); i++ )
{
if ( vec[i] > value ) return i - 1;
}
return vec.size();
};
double prevDepth = baseDepth[0];
for ( int layerNo = 0; layerNo < targetNumLayers; layerNo++ )
{
double ap = layerNo;
int az = findSmallerIndex( ap, AM );
CAF_ASSERT( az >= 0 );
CAF_ASSERT( az < static_cast<int>( AM.size() ) );
int azNext = az + 1;
double ba = AM[az];
double bb = AM[azNext];
double be = bb - ba;
double bc = baseDepth[az];
double bd = baseDepth[azNext];
double bf = bd - bc;
double offset = ( ap - ba ) * bf / be;
double as = bc + offset;
double av = as - prevDepth;
double ay = as - av / 2.0;
RiaLogging::info( QString( "Res[%1] = %2 az=%3 ba=%4 bb=%5 bc=%6 av=%7 as=%8 offset=%9 azNext=%10" )
.arg( layerNo )
.arg( ay )
.arg( az )
.arg( ba )
.arg( bb )
.arg( bc )
.arg( av )
.arg( as )
.arg( offset )
.arg( azNext ) );
gridYs.push_back( as );
prevDepth = as;
}
gridYs.push_back( maxY );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEnsembleFractureStatistics::generateAllLayers(
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<Layer>& layers )
{
for ( auto def : stimPlanFractureDefinitions )
{
double offset = computeDepthOfWellPathAtFracture( def );
bool isFirst = true;
double topDepth = 0.0;
for ( double y : def->ys() )
{
double depth = offset + y;
if ( !isFirst )
{
double bottomDepth = depth;
Layer layer( topDepth, bottomDepth );
layers.push_back( layer );
}
isFirst = false;
topDepth = depth;
}
}
std::sort( layers.begin(), layers.end(), []( const Layer& a, const Layer& b ) {
return a.centerDepth() > b.centerDepth();
} );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimEnsembleFractureStatistics::getTargetNumberOfLayers(
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions ) const
{
if ( m_adaptiveSamplingSizeType() == AdaptiveSamplingSizeType::USER_DEFINED ) return m_adaptiveNumSamplesY();
int maxNy = 0;
int minNy = std::numeric_limits<int>::max();
int sum = 0;
for ( auto def : stimPlanFractureDefinitions )
{
int ny = static_cast<int>( def->ys().size() );
maxNy = std::max( maxNy, ny );
minNy = std::min( minNy, ny );
sum += ny;
}
if ( m_adaptiveSamplingSizeType() == AdaptiveSamplingSizeType::MAXIMUM )
return maxNy;
else if ( m_adaptiveSamplingSizeType() == AdaptiveSamplingSizeType::MINIMUM )
return minNy;
else
{
CAF_ASSERT( m_adaptiveSamplingSizeType() == AdaptiveSamplingSizeType::AVERAGE );
return static_cast<int>( std::ceil( static_cast<double>( sum ) / stimPlanFractureDefinitions.size() ) );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimEnsembleFractureStatistics::linearSampling( double minValue,
double maxValue,
int numSamples,
std::vector<double>& samples )
{
double sampleDistance = ( maxValue - minValue ) / numSamples;
for ( int s = 0; s < numSamples; s++ )
{
double pos = minValue + s * sampleDistance + sampleDistance * 0.5;
samples.push_back( pos );
}
return sampleDistance;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -25,6 +25,23 @@
class RigFractureCell;
class RigSlice2D;
class Layer
{
public:
Layer( double topDepth, double bottomDepth )
: m_topDepth( topDepth )
, m_bottomDepth( bottomDepth ){};
double topDepth() const { return m_topDepth; };
double bottomDepth() const { return m_bottomDepth; };
double centerDepth() const { return ( m_bottomDepth + m_topDepth ) / 2.0; };
double thickness() const { return m_topDepth - m_bottomDepth; };
private:
double m_topDepth;
double m_bottomDepth;
};
//==================================================================================================
///
///
@ -49,6 +66,23 @@ public:
{
ADAPTIVE,
UNIFORM,
NAIVE
};
enum class MeanType
{
HARMONIC,
ARITHMETIC,
GEOMETRIC,
MINIMUM
};
enum class AdaptiveSamplingSizeType
{
MINIMUM,
MAXIMUM,
AVERAGE,
USER_DEFINED
};
RimEnsembleFractureStatistics();
@ -84,8 +118,41 @@ protected:
static std::set<std::pair<QString, QString>>
findAllResultNames( const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions );
std::tuple<double, double, double, double>
findSamplingIntervals( const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const;
void generateUniformMesh( double minX,
double maxX,
double minY,
double maxY,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const;
void generateNaiveMesh( double minX,
double maxX,
double minY,
double maxY,
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const;
void generateAdaptiveMesh( double minX,
double maxX,
double minY,
double maxY,
const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<double>& gridXs,
std::vector<double>& gridYs ) const;
int getTargetNumberOfLayers( const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions ) const;
static std::tuple<double, double, double, double>
findExtentsOfGrids( const std::vector<cvf::cref<RigFractureGrid>>& fractureGrids );
findMaxGridExtents( const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions );
static void generateAllLayers( const std::vector<cvf::ref<RigStimPlanFractureDefinition>>& stimPlanFractureDefinitions,
std::vector<Layer>& layers );
static void sampleAllGrids( const std::vector<cvf::cref<RigFractureGrid>>& fractureGrids,
const std::vector<double>& samplesX,
@ -101,6 +168,8 @@ protected:
static bool writeStatisticsToCsv( const QString& filePath, const RigSlice2D& samples );
static double linearSampling( double minValue, double maxValue, int numSamples, std::vector<double>& samples );
caf::PdmField<std::vector<caf::FilePath>> m_filePaths;
caf::PdmField<QString> m_filePathsTable;
caf::PdmField<bool> m_computeStatistics;
@ -108,5 +177,9 @@ protected:
caf::PdmField<int> m_numSamplesY;
caf::PdmField<caf::AppEnum<MeshType>> m_meshType;
caf::PdmField<caf::AppEnum<MeanType>> m_adaptiveMeanType;
caf::PdmField<caf::AppEnum<AdaptiveSamplingSizeType>> m_adaptiveSamplingSizeType;
caf::PdmField<int> m_adaptiveNumSamplesY;
caf::PdmField<std::vector<caf::AppEnum<RimEnsembleFractureStatistics::StatisticsType>>> m_selectedStatisticsType;
};

View File

@ -134,6 +134,22 @@ double RigStimPlanFractureDefinition::maxY() const
return m_Ys.back();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::ys() const
{
return m_Ys;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigStimPlanFractureDefinition::xs() const
{
return m_Xs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -72,6 +72,9 @@ public:
double minDepth() const;
double maxDepth() const;
const std::vector<double>& xs() const;
const std::vector<double>& ys() const;
double topPerfTvd() const;
double bottomPerfTvd() const;
void setTvdToTopPerf( double topPerfTvd );