MswRollUp: Started to clean up the MSW code.

This is an intermediate commit and does not compile
p4#: 22216
This commit is contained in:
Jacob Støren 2013-08-26 14:15:27 +02:00
parent 27cac28b74
commit e6dce28fa3
3 changed files with 157 additions and 189 deletions

View File

@ -864,41 +864,23 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
if (well_state_is_MSW(ert_well_state)) if (well_state_is_MSW(ert_well_state))
{ {
// Loop over all the grids in the model. If we have connections in one, we will discard wellResults->setMultiSegmentWell(true);
// the main grid connections as the well connections are duplicated in the main grid and LGR grids
bool hasWellConnectionsInLGR = false; for (size_t gridNr = 0; gridNr < grids.size(); ++gridNr)
#if 0
// To be discussed with Statoil
for (size_t gridNr = 1; gridNr < grids.size(); ++gridNr)
{ {
RigGridBase* lgrGrid = m_eclipseCase->grid(gridNr); // Set the wellhead
if (well_state_has_grid_connections(ert_well_state, lgrGrid->gridName().data()))
{ {
hasWellConnectionsInLGR = true; // If several grids have a wellhead definition for this well, we use the last one.
break; // (Possibly the innermost LGR)
}
}
#endif
size_t gridNr = hasWellConnectionsInLGR ? 1 : 0; const well_conn_type* ert_wellhead = well_state_iget_wellhead(ert_well_state, static_cast<int>(gridNr));
for (; gridNr < grids.size(); ++gridNr) if (ert_wellhead)
{ {
wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1 );
// Wellhead. If several grids have a wellhead definition for this well, we use the last one. (Possibly the innermost LGR) }
const well_conn_type* ert_wellhead = well_state_iget_wellhead(ert_well_state, static_cast<int>(gridNr));
if (ert_wellhead)
{
wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1 );
}
else
{
// CVF_ASSERT(0); // This is just a test assert to see if this condition exists in some file.
// All the grids does not necessarily have a well head definition. (I think, JJS)
} }
// Find the grid name to be used later as key towards ert
std::string gridName; std::string gridName;
if (gridNr == 0) if (gridNr == 0)
@ -912,70 +894,56 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
} }
// Fill the SegmentData list with the segments from ert in branch sorted order:
// BrancN<TopSegment...BottomSegment>, ..., Branch0<TopSegment...BottomSegment>
std::list<SegmentData> segmentList; std::list<SegmentData> segmentList;
std::vector<const well_segment_type*> outletBranchSegmentList; // Keep a list of branch outlet segments to avoid traversal twice std::vector<const well_segment_type*> outletBranchSegmentList; // Keep a list of branch outlet segments to avoid traversal twice
std::vector<int> ertBranchIDs; std::vector<int> ertBranchIDs;
int branchCount = 0; well_branch_collection_type* branches = well_state_get_branches(ert_well_state);
if (well_state_is_MSW(ert_well_state)) int branchCount = well_branch_collection_get_size(branches);
for (int branchIdx = 0; branchIdx < well_branch_collection_get_size(branches); branchIdx++)
{ {
wellResults->setMultiSegmentWell(true); const well_segment_type* segment = well_branch_collection_iget_start_segment(branches, branchIdx);
int branchId = well_segment_get_branch_id(segment);
well_branch_collection_type* branches = well_state_get_branches(ert_well_state); ertBranchIDs.push_back(branchId);
branchCount = well_branch_collection_get_size(branches); while (segment && branchId == well_segment_get_branch_id(segment))
for (int branchIdx = 0; branchIdx < well_branch_collection_get_size(branches); branchIdx++)
{ {
const well_segment_type* segment = well_branch_collection_iget_start_segment(branches, branchIdx); SegmentData segmentData(NULL);
int branchId = well_segment_get_branch_id(segment); segmentData.m_branchId = branchId;
segmentData.m_segmentId = well_segment_get_id(segment);
segmentData.m_gridIndex = gridNr;
ertBranchIDs.push_back(branchId); if (well_segment_has_grid_connections(segment, gridName.data()))
while (segment && branchId == well_segment_get_branch_id(segment))
{ {
SegmentData segmentData(NULL); const well_conn_collection_type* connections = well_segment_get_connections(segment, gridName.data());
segmentData.m_branchId = branchId; segmentData.m_connections = connections;
segmentData.m_segmentId = well_segment_get_id(segment);
segmentData.m_gridIndex = gridNr;
if (well_segment_has_grid_connections(segment, gridName.data()))
{
const well_conn_collection_type* connections = well_segment_get_connections(segment, gridName.data());
segmentData.m_connections = connections;
}
// Insert in front, as the segments are accessed starting from grid cell closes to well head
segmentList.push_front(segmentData);
if (well_segment_get_outlet_id(segment) == -1)
{
break;
}
segment = well_segment_get_outlet(segment);
} }
outletBranchSegmentList.push_back(segment); // Insert in front, as the segments are accessed starting from grid cell closes to well head
segmentList.push_front(segmentData);
if (well_segment_get_outlet_id(segment) == -1)
{
break;
}
segment = well_segment_get_outlet(segment);
} }
} outletBranchSegmentList.push_back(segment);
else
{
branchCount = 1;
ertBranchIDs.push_back(0);
const well_conn_collection_type* connections = well_state_get_grid_connections(ert_well_state, gridName.data());
SegmentData segmentData(connections);
segmentData.m_gridIndex = gridNr;
segmentList.push_front(segmentData);
} }
size_t currentGridBranchStartIndex = wellResFrame.m_wellResultBranches.size(); size_t currentGridBranchStartIndex = wellResFrame.m_wellResultBranches.size();
wellResFrame.m_wellResultBranches.resize(currentGridBranchStartIndex + branchCount); wellResFrame.m_wellResultBranches.resize(currentGridBranchStartIndex + branchCount);
// Import all well result cells for all connections, adding one ResultPoint to represent the bottom position
// for each segment having no connections
// Import all well result cells for all connections
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++) for (int branchIdx = 0; branchIdx < branchCount; branchIdx++)
{ {
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx]; RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx];
@ -993,13 +961,11 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
if (!connData.m_connections) if (!connData.m_connections)
{ {
size_t existingCellCount = wellResultBranch.m_branchResultPoints.size(); RigWellResultPoint data;
wellResultBranch.m_branchResultPoints.resize(existingCellCount + 1);
RigWellResultPoint& data = wellResultBranch.m_branchResultPoints[existingCellCount];
data.m_ertBranchId = connData.m_branchId; data.m_ertBranchId = connData.m_branchId;
data.m_ertSegmentId = connData.m_segmentId; data.m_ertSegmentId = connData.m_segmentId;
wellResultBranch.m_branchResultPoints.push_back(data);
} }
else else
{ {
@ -1018,141 +984,140 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
} }
} }
// Assign outlet well cells to leaf branch well heads
if (well_state_is_MSW(ert_well_state)) for (int branchIdx = 0; branchIdx < branchCount; branchIdx++)
{ {
RigWellResultBranch& wellResultLeafBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx];
// Assign outlet well cells to leaf branch well heads const well_segment_type* outletBranchSegment = outletBranchSegmentList[branchIdx];
CVF_ASSERT(outletBranchSegment);
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++) int outletErtBranchId = well_segment_get_branch_id(outletBranchSegment);
size_t outletErtBranchIndex = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < ertBranchIDs.size(); i++)
{ {
RigWellResultBranch& wellResultLeafBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx]; if (ertBranchIDs[i] == outletErtBranchId)
const well_segment_type* outletBranchSegment = outletBranchSegmentList[branchIdx];
CVF_ASSERT(outletBranchSegment);
int outletErtBranchId = well_segment_get_branch_id(outletBranchSegment);
size_t outletErtBranchIndex = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < ertBranchIDs.size(); i++)
{ {
if (ertBranchIDs[i] == outletErtBranchId) outletErtBranchIndex = i;
{
outletErtBranchIndex = i;
}
}
RigWellResultBranch& outletResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + outletErtBranchIndex];
int outletErtSegmentId = well_segment_get_branch_id(outletBranchSegment);
size_t lastCellIndexForSegmentIdInOutletBranch = cvf::UNDEFINED_SIZE_T;
for (size_t outletCellIdx = 0; outletCellIdx < outletResultBranch.m_branchResultPoints.size(); outletCellIdx++)
{
if (outletResultBranch.m_branchResultPoints[outletCellIdx].m_ertSegmentId == outletErtSegmentId)
{
lastCellIndexForSegmentIdInOutletBranch = outletCellIdx;
}
}
if (lastCellIndexForSegmentIdInOutletBranch == cvf::UNDEFINED_SIZE_T)
{
// Did not find the cell in the outlet branch based on branch id and segment id from outlet cell in leaf branch
CVF_ASSERT(0);
}
else
{
RigWellResultPoint& outletCell = outletResultBranch.m_branchResultPoints[lastCellIndexForSegmentIdInOutletBranch];
wellResultLeafBranch.m_outletBranchIndex_OBSOLETE = currentGridBranchStartIndex + outletErtBranchIndex;
wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE = lastCellIndexForSegmentIdInOutletBranch;
} }
} }
RigWellResultBranch& outletResultBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + outletErtBranchIndex];
// Update outlet well cells with no grid cell connections int outletErtSegmentId = well_segment_get_branch_id(outletBranchSegment);
size_t lastCellIndexForSegmentIdInOutletBranch = cvf::UNDEFINED_SIZE_T;
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++) for (size_t outletCellIdx = 0; outletCellIdx < outletResultBranch.m_branchResultPoints.size(); outletCellIdx++)
{ {
RigWellResultBranch& wellResultLeafBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx]; if (outletResultBranch.m_branchResultPoints[outletCellIdx].m_ertSegmentId == outletErtSegmentId)
const RigWellResultPoint* leafBranchHead = wellResFrame.findResultCellFromOutletSpecification(wellResultLeafBranch.m_outletBranchIndex_OBSOLETE, wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE);
if (!leafBranchHead || leafBranchHead->isCell())
{ {
continue; lastCellIndexForSegmentIdInOutletBranch = outletCellIdx;
} }
}
RigWellResultBranch& outletResultBranch = wellResFrame.m_wellResultBranches[wellResultLeafBranch.m_outletBranchIndex_OBSOLETE]; if (lastCellIndexForSegmentIdInOutletBranch == cvf::UNDEFINED_SIZE_T)
{
// Did not find the cell in the outlet branch based on branch id and segment id from outlet cell in leaf branch
CVF_ASSERT(0);
}
else
{
RigWellResultPoint& outletCell = outletResultBranch.m_branchResultPoints[lastCellIndexForSegmentIdInOutletBranch];
size_t firstCellIndexWithGridConnectionInLeafBranch = cvf::UNDEFINED_SIZE_T; wellResultLeafBranch.m_outletBranchIndex_OBSOLETE = currentGridBranchStartIndex + outletErtBranchIndex;
for (size_t j = 0; j < wellResultLeafBranch.m_branchResultPoints.size(); j++) wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE = lastCellIndexForSegmentIdInOutletBranch;
}
}
// Update outlet well cells with no grid cell connections
for (int branchIdx = 0; branchIdx < branchCount; branchIdx++)
{
RigWellResultBranch& wellResultLeafBranch = wellResFrame.m_wellResultBranches[currentGridBranchStartIndex + branchIdx];
const RigWellResultPoint* leafBranchHead = wellResFrame.findResultCellFromOutletSpecification(wellResultLeafBranch.m_outletBranchIndex_OBSOLETE, wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE);
if (!leafBranchHead || leafBranchHead->isCell())
{
continue;
}
RigWellResultBranch& outletResultBranch = wellResFrame.m_wellResultBranches[wellResultLeafBranch.m_outletBranchIndex_OBSOLETE];
size_t firstCellIndexWithGridConnectionInLeafBranch = cvf::UNDEFINED_SIZE_T;
for (size_t j = 0; j < wellResultLeafBranch.m_branchResultPoints.size(); j++)
{
if (wellResultLeafBranch.m_branchResultPoints[j].isCell())
{ {
if (wellResultLeafBranch.m_branchResultPoints[j].isCell()) firstCellIndexWithGridConnectionInLeafBranch = j;
break;
}
}
if (firstCellIndexWithGridConnectionInLeafBranch != cvf::UNDEFINED_SIZE_T)
{
const RigCell& firstCellWithGridConnectionInLeafBranch = m_eclipseCase->cellFromWellResultCell(wellResultLeafBranch.m_branchResultPoints[firstCellIndexWithGridConnectionInLeafBranch]);
cvf::Vec3d firstGridConnectionCenterInLeafBranch = firstCellWithGridConnectionInLeafBranch.center();
size_t cellIndexInOutletBranch = wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE;
CVF_ASSERT(cellIndexInOutletBranch != cvf::UNDEFINED_SIZE_T);
RigWellResultPoint& currCell = outletResultBranch.m_branchResultPoints[cellIndexInOutletBranch];
while (cellIndexInOutletBranch != cvf::UNDEFINED_SIZE_T && !currCell.isCell())
{
size_t branchConnectionCount = currCell.m_branchConnectionCount;
if (branchConnectionCount == 0)
{ {
firstCellIndexWithGridConnectionInLeafBranch = j; currCell.m_bottomPosition = firstGridConnectionCenterInLeafBranch;
break;
} }
} else
if (firstCellIndexWithGridConnectionInLeafBranch != cvf::UNDEFINED_SIZE_T)
{
const RigCell& firstCellWithGridConnectionInLeafBranch = m_eclipseCase->cellFromWellResultCell(wellResultLeafBranch.m_branchResultPoints[firstCellIndexWithGridConnectionInLeafBranch]);
cvf::Vec3d firstGridConnectionCenterInLeafBranch = firstCellWithGridConnectionInLeafBranch.center();
size_t cellIndexInOutletBranch = wellResultLeafBranch.m_outletBranchHeadCellIndex_OBSOLETE;
CVF_ASSERT(cellIndexInOutletBranch != cvf::UNDEFINED_SIZE_T);
RigWellResultPoint& currCell = outletResultBranch.m_branchResultPoints[cellIndexInOutletBranch];
while (cellIndexInOutletBranch != cvf::UNDEFINED_SIZE_T && !currCell.isCell())
{ {
size_t branchConnectionCount = currCell.m_branchConnectionCount; cvf::Vec3d currentWeightedCoord = currCell.m_bottomPosition * branchConnectionCount / static_cast<double>(branchConnectionCount + 1);
if (branchConnectionCount == 0) cvf::Vec3d additionalWeightedCoord = firstGridConnectionCenterInLeafBranch / static_cast<double>(branchConnectionCount + 1);
currCell.m_bottomPosition = currentWeightedCoord + additionalWeightedCoord;
}
currCell.m_branchConnectionCount++;
if (cellIndexInOutletBranch == 0)
{
cellIndexInOutletBranch = cvf::UNDEFINED_SIZE_T;
// Find the branch the outlet is connected to, and continue update of
// segments until a segment with a grid connection is found
const RigWellResultPoint* leafBranchHead = wellResFrame.findResultCellFromOutletSpecification(outletResultBranch.m_outletBranchIndex_OBSOLETE, outletResultBranch.m_outletBranchHeadCellIndex_OBSOLETE);
if (leafBranchHead &&
!leafBranchHead->isCell() &&
leafBranchHead->m_ertBranchId != outletResultBranch.m_ertBranchId)
{ {
currCell.m_bottomPosition = firstGridConnectionCenterInLeafBranch; outletResultBranch = wellResFrame.m_wellResultBranches[outletResultBranch.m_outletBranchIndex_OBSOLETE];
cellIndexInOutletBranch = outletResultBranch.m_outletBranchHeadCellIndex_OBSOLETE;
} }
else }
{ else
cvf::Vec3d currentWeightedCoord = currCell.m_bottomPosition * branchConnectionCount / static_cast<double>(branchConnectionCount + 1); {
cvf::Vec3d additionalWeightedCoord = firstGridConnectionCenterInLeafBranch / static_cast<double>(branchConnectionCount + 1); cellIndexInOutletBranch--;
}
currCell.m_bottomPosition = currentWeightedCoord + additionalWeightedCoord; if(cellIndexInOutletBranch >= 0 && cellIndexInOutletBranch < outletResultBranch.m_branchResultPoints.size())
} {
currCell = outletResultBranch.m_branchResultPoints[cellIndexInOutletBranch];
currCell.m_branchConnectionCount++;
if (cellIndexInOutletBranch == 0)
{
cellIndexInOutletBranch = cvf::UNDEFINED_SIZE_T;
// Find the branch the outlet is connected to, and continue update of
// segments until a segment with a grid connection is found
const RigWellResultPoint* leafBranchHead = wellResFrame.findResultCellFromOutletSpecification(outletResultBranch.m_outletBranchIndex_OBSOLETE, outletResultBranch.m_outletBranchHeadCellIndex_OBSOLETE);
if (leafBranchHead &&
!leafBranchHead->isCell() &&
leafBranchHead->m_ertBranchId != outletResultBranch.m_ertBranchId)
{
outletResultBranch = wellResFrame.m_wellResultBranches[outletResultBranch.m_outletBranchIndex_OBSOLETE];
cellIndexInOutletBranch = outletResultBranch.m_outletBranchHeadCellIndex_OBSOLETE;
}
}
else
{
cellIndexInOutletBranch--;
}
if(cellIndexInOutletBranch >= 0 && cellIndexInOutletBranch < outletResultBranch.m_branchResultPoints.size())
{
currCell = outletResultBranch.m_branchResultPoints[cellIndexInOutletBranch];
}
} }
} }
} }
} }
} }
} }
else else
{ {
// Code handling None-MSW Wells ... Normal wells that is.
// Loop over all the grids in the model. If we have connections in one, we will discard // Loop over all the grids in the model. If we have connections in one, we will discard
// the main grid connections as the well connections are duplicated in the main grid and LGR grids // the main grid connections as the well connections are duplicated in the main grid and LGR grids
// Verified on 10 k case JJS. But smarter things could be done, like showing the "main grid well" if turning off the LGR's // Verified on 10 k case JJS. But smarter things could be done, like showing the "main grid well" if turning off the LGR's
@ -1178,13 +1143,13 @@ void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid)
if (ert_wellhead) if (ert_wellhead)
{ {
wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1 ); wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1 );
std::cout << "Wellhead YES at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl; //std::cout << "Wellhead YES at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl;
} }
else else
{ {
std::cout << "Wellhead NO at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl; // std::cout << "Wellhead NO at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl;
//CVF_ASSERT(0); // This is just a test assert to see if this condition exists in some file. //CVF_ASSERT(0); // This is just a test assert to see if this condition exists in some files and it does.
// All the grids does not necessarily have a well head definition. (I think, JJS) // All the grids does not necessarily have a well head definition.
} }

View File

@ -243,8 +243,8 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
CVF_ASSERT(wellResults->isMultiSegmentWell() || resBranches.size() <= 1); CVF_ASSERT(wellResults->isMultiSegmentWell() || resBranches.size() <= 1);
// The centerline is calculated by adding a point when the pipe enters a cell, // The centerline is calculated by adding a point when the pipe enters a cell,
// and one when the line leaves the cell. // and one when the line leaves the cell.
// For the sake of the loop: // For the sake of the loop:
// The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point to. // The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point to.
// The previous cell is the one we leave, and calculate the "out-point" from // The previous cell is the one we leave, and calculate the "out-point" from
@ -328,7 +328,7 @@ void RivWellPipesPartMgr::calculateWellPipeCenterline( std::vector< std::vector
if (!currentWellResPoint.isValid()) if (!currentWellResPoint.isValid())
{ {
CVF_ASSERT(false); //CVF_ASSERT(false); // Some segments does not get anything yet.
continue; continue;
} }

View File

@ -168,6 +168,9 @@ void RigGridBase::cellCornerVertices(size_t cellIndex, cvf::Vec3d vertices[8]) c
//-------------------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------------------
size_t RigGridBase::cellIndexFromIJK(size_t i, size_t j, size_t k) const size_t RigGridBase::cellIndexFromIJK(size_t i, size_t j, size_t k) const
{ {
CVF_TIGHT_ASSERT(i != cvf::UNDEFINED_SIZE_T && j != cvf::UNDEFINED_SIZE_T && k != cvf::UNDEFINED_SIZE_T );
CVF_TIGHT_ASSERT(i < m_gridPointDimensions.x() && j < m_gridPointDimensions.y() && k < m_gridPointDimensions.z() );
size_t ci = i + j*(m_gridPointDimensions.x() - 1) + k*((m_gridPointDimensions.x() - 1)*(m_gridPointDimensions.y() - 1)); size_t ci = i + j*(m_gridPointDimensions.x() - 1) + k*((m_gridPointDimensions.x() - 1)*(m_gridPointDimensions.y() - 1));
return ci; return ci;
} }