#4683 clang-format on all files in ApplicationCode

This commit is contained in:
Magne Sjaastad
2019-09-06 10:40:57 +02:00
parent 3a317504bb
commit fe9e567825
2092 changed files with 117952 additions and 111846 deletions

View File

@@ -2,17 +2,17 @@
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
@@ -21,18 +21,17 @@
#include <cmath> // Needed for HUGE_VAL on Linux
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::meanCellScalarValue(double& meanValue)
void RigStatisticsCalculator::meanCellScalarValue( double& meanValue )
{
double valueSum = 0.0;
double valueSum = 0.0;
size_t sampleCount = 0;
this->valueSumAndSampleCount(valueSum, sampleCount);
this->valueSumAndSampleCount( valueSum, sampleCount );
if (sampleCount == 0)
if ( sampleCount == 0 )
{
meanValue = HUGE_VAL;
}
@@ -43,16 +42,16 @@ void RigStatisticsCalculator::meanCellScalarValue(double& meanValue)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::meanCellScalarValue(size_t timeStepIndex, double& meanValue)
void RigStatisticsCalculator::meanCellScalarValue( size_t timeStepIndex, double& meanValue )
{
double valueSum = 0.0;
double valueSum = 0.0;
size_t sampleCount = 0;
this->valueSumAndSampleCount(timeStepIndex, valueSum, sampleCount);
this->valueSumAndSampleCount( timeStepIndex, valueSum, sampleCount );
if (sampleCount == 0)
if ( sampleCount == 0 )
{
meanValue = HUGE_VAL;
}
@@ -60,80 +59,77 @@ void RigStatisticsCalculator::meanCellScalarValue(size_t timeStepIndex, double&
{
meanValue = valueSum / sampleCount;
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::valueSumAndSampleCount(double& valueSum, size_t& sampleCount)
void RigStatisticsCalculator::valueSumAndSampleCount( double& valueSum, size_t& sampleCount )
{
size_t tsCount = this->timeStepCount();
for (size_t tIdx = 0; tIdx < tsCount; tIdx++)
for ( size_t tIdx = 0; tIdx < tsCount; tIdx++ )
{
this->valueSumAndSampleCount(tIdx, valueSum, sampleCount);
this->valueSumAndSampleCount( tIdx, valueSum, sampleCount );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::addDataToHistogramCalculator(RigHistogramCalculator& histogramCalculator)
void RigStatisticsCalculator::addDataToHistogramCalculator( RigHistogramCalculator& histogramCalculator )
{
size_t tsCount = this->timeStepCount();
for (size_t tIdx = 0; tIdx < tsCount; tIdx++)
for ( size_t tIdx = 0; tIdx < tsCount; tIdx++ )
{
this->addDataToHistogramCalculator(tIdx, histogramCalculator);
this->addDataToHistogramCalculator( tIdx, histogramCalculator );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::mobileVolumeWeightedMean(size_t timeStepIndex, double& mean)
{}
void RigStatisticsCalculator::mobileVolumeWeightedMean( size_t timeStepIndex, double& mean ) {}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::mobileVolumeWeightedMean(double& mean)
void RigStatisticsCalculator::mobileVolumeWeightedMean( double& mean )
{
double sum = 0.0;
double sum = 0.0;
size_t tsCount = this->timeStepCount();
for (size_t tIdx = 0; tIdx < tsCount; tIdx++)
for ( size_t tIdx = 0; tIdx < tsCount; tIdx++ )
{
double meanForTimeStep;
this->mobileVolumeWeightedMean(tIdx, meanForTimeStep);
this->mobileVolumeWeightedMean( tIdx, meanForTimeStep );
sum += meanForTimeStep;
}
if (tsCount != 0)
if ( tsCount != 0 )
{
mean = sum / tsCount;
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsCalculator::posNegClosestToZero(const std::vector<double>& values, double& pos, double& neg)
void RigStatisticsCalculator::posNegClosestToZero( const std::vector<double>& values, double& pos, double& neg )
{
size_t i;
for (i = 0; i < values.size(); i++)
for ( i = 0; i < values.size(); i++ )
{
if (values[i] == HUGE_VAL)
if ( values[i] == HUGE_VAL )
{
continue;
}
if (values[i] < pos && values[i] > 0)
if ( values[i] < pos && values[i] > 0 )
{
pos = values[i];
}
if (values[i] > neg && values[i] < 0)
if ( values[i] > neg && values[i] < 0 )
{
neg = values[i];
}
}
}

View File

@@ -2,24 +2,23 @@
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "cvfCollection.h"
#include "cvfObject.h"
@@ -28,29 +27,29 @@
class RigHistogramCalculator;
//==================================================================================================
///
///
//==================================================================================================
class RigStatisticsCalculator : public cvf::Object
{
public:
virtual void minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max) = 0;
virtual void posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg) = 0;
void meanCellScalarValue(double& meanValue);
void meanCellScalarValue(size_t timeStepIndex, double& meanValue);
virtual void minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max ) = 0;
virtual void posNegClosestToZero( size_t timeStepIndex, double& pos, double& neg ) = 0;
void valueSumAndSampleCount(double& valueSum, size_t& sampleCount);
virtual void valueSumAndSampleCount(size_t timeStepIndex, double& valueSum, size_t& sampleCount) = 0;
void meanCellScalarValue( double& meanValue );
void meanCellScalarValue( size_t timeStepIndex, double& meanValue );
void addDataToHistogramCalculator(RigHistogramCalculator& histogramCalculator);
virtual void addDataToHistogramCalculator(size_t timeStepIndex, RigHistogramCalculator& histogramCalculator) = 0;
void valueSumAndSampleCount( double& valueSum, size_t& sampleCount );
virtual void valueSumAndSampleCount( size_t timeStepIndex, double& valueSum, size_t& sampleCount ) = 0;
virtual void uniqueValues(size_t timeStepIndex, std::set<int>& values) = 0;
void addDataToHistogramCalculator( RigHistogramCalculator& histogramCalculator );
virtual void addDataToHistogramCalculator( size_t timeStepIndex, RigHistogramCalculator& histogramCalculator ) = 0;
virtual size_t timeStepCount() = 0;
virtual void uniqueValues( size_t timeStepIndex, std::set<int>& values ) = 0;
void mobileVolumeWeightedMean(double& mean);
virtual void mobileVolumeWeightedMean(size_t timeStepIndex, double& mean);
virtual size_t timeStepCount() = 0;
static void posNegClosestToZero(const std::vector<double>& values, double& pos, double& neg);
void mobileVolumeWeightedMean( double& mean );
virtual void mobileVolumeWeightedMean( size_t timeStepIndex, double& mean );
static void posNegClosestToZero( const std::vector<double>& values, double& pos, double& neg );
};

View File

@@ -2,17 +2,17 @@
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
@@ -24,20 +24,19 @@
#include <cmath> // Needed for HUGE_VAL on Linux
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
RigStatisticsDataCache::RigStatisticsDataCache(RigStatisticsCalculator* statisticsCalculator)
: m_statisticsCalculator(statisticsCalculator)
RigStatisticsDataCache::RigStatisticsDataCache( RigStatisticsCalculator* statisticsCalculator )
: m_statisticsCalculator( statisticsCalculator )
{
CVF_ASSERT(m_statisticsCalculator.notNull());
CVF_ASSERT( m_statisticsCalculator.notNull() );
clearAllStatistics();
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::clearAllStatistics()
{
@@ -46,26 +45,26 @@ void RigStatisticsDataCache::clearAllStatistics()
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::minMaxCellScalarValues(double& min, double& max)
void RigStatisticsDataCache::minMaxCellScalarValues( double& min, double& max )
{
if (!m_statsAllTimesteps.m_isMaxMinCalculated)
if ( !m_statsAllTimesteps.m_isMaxMinCalculated )
{
min = HUGE_VAL;
max = -HUGE_VAL;
size_t i;
for (i = 0; i < m_statisticsCalculator->timeStepCount(); i++)
for ( i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double tsmin, tsmax;
this->minMaxCellScalarValues(i, tsmin, tsmax);
if (tsmin < min) min = tsmin;
if (tsmax > max) max = tsmax;
this->minMaxCellScalarValues( i, tsmin, tsmax );
if ( tsmin < min ) min = tsmin;
if ( tsmax > max ) max = tsmax;
}
m_statsAllTimesteps.m_minValue = min;
m_statsAllTimesteps.m_maxValue = max;
m_statsAllTimesteps.m_minValue = min;
m_statsAllTimesteps.m_maxValue = max;
m_statsAllTimesteps.m_isMaxMinCalculated = true;
}
@@ -74,21 +73,21 @@ void RigStatisticsDataCache::minMaxCellScalarValues(double& min, double& max)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max)
void RigStatisticsDataCache::minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max )
{
if (timeStepIndex >= m_statsPrTs.size())
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize(timeStepIndex + 1);
m_statsPrTs.resize( timeStepIndex + 1 );
}
if (!m_statsPrTs[timeStepIndex].m_isMaxMinCalculated)
if ( !m_statsPrTs[timeStepIndex].m_isMaxMinCalculated )
{
double tsMin = HUGE_VAL;
double tsMax = -HUGE_VAL;
m_statisticsCalculator->minMaxCellScalarValues(timeStepIndex, tsMin, tsMax);
m_statisticsCalculator->minMaxCellScalarValues( timeStepIndex, tsMin, tsMax );
m_statsPrTs[timeStepIndex].m_minValue = tsMin;
m_statsPrTs[timeStepIndex].m_maxValue = tsMax;
@@ -101,26 +100,26 @@ void RigStatisticsDataCache::minMaxCellScalarValues(size_t timeStepIndex, double
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::posNegClosestToZero(double& pos, double& neg)
void RigStatisticsDataCache::posNegClosestToZero( double& pos, double& neg )
{
if (!m_statsAllTimesteps.m_isClosestToZeroCalculated)
if ( !m_statsAllTimesteps.m_isClosestToZeroCalculated )
{
pos = HUGE_VAL;
neg = -HUGE_VAL;
size_t i;
for (i = 0; i < m_statisticsCalculator->timeStepCount(); i++)
for ( i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double tsNeg, tsPos;
this->posNegClosestToZero(i, tsPos, tsNeg);
if (tsNeg > neg && tsNeg < 0) neg = tsNeg;
if (tsPos < pos && tsPos > 0) pos = tsPos;
this->posNegClosestToZero( i, tsPos, tsNeg );
if ( tsNeg > neg && tsNeg < 0 ) neg = tsNeg;
if ( tsPos < pos && tsPos > 0 ) pos = tsPos;
}
m_statsAllTimesteps.m_posClosestToZero = pos;
m_statsAllTimesteps.m_negClosestToZero = neg;
m_statsAllTimesteps.m_posClosestToZero = pos;
m_statsAllTimesteps.m_negClosestToZero = neg;
m_statsAllTimesteps.m_isClosestToZeroCalculated = true;
}
@@ -129,22 +128,21 @@ void RigStatisticsDataCache::posNegClosestToZero(double& pos, double& neg)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::posNegClosestToZero(size_t timeStepIndex, double& posNearZero, double& negNearZero)
void RigStatisticsDataCache::posNegClosestToZero( size_t timeStepIndex, double& posNearZero, double& negNearZero )
{
if (timeStepIndex >= m_statsPrTs.size())
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize(timeStepIndex + 1);
m_statsPrTs.resize( timeStepIndex + 1 );
}
if (!m_statsPrTs[timeStepIndex].m_isClosestToZeroCalculated)
if ( !m_statsPrTs[timeStepIndex].m_isClosestToZeroCalculated )
{
double pos = HUGE_VAL;
double neg = -HUGE_VAL;
m_statisticsCalculator->posNegClosestToZero(timeStepIndex, pos, neg);
m_statisticsCalculator->posNegClosestToZero( timeStepIndex, pos, neg );
m_statsPrTs[timeStepIndex].m_posClosestToZero = pos;
m_statsPrTs[timeStepIndex].m_negClosestToZero = neg;
@@ -156,13 +154,13 @@ void RigStatisticsDataCache::posNegClosestToZero(size_t timeStepIndex, double& p
negNearZero = m_statsPrTs[timeStepIndex].m_negClosestToZero;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::meanCellScalarValues(double& meanValue)
void RigStatisticsDataCache::meanCellScalarValues( double& meanValue )
{
if (!m_statsAllTimesteps.m_isMeanCalculated)
if ( !m_statsAllTimesteps.m_isMeanCalculated )
{
m_statisticsCalculator->meanCellScalarValue(m_statsAllTimesteps.m_meanValue);
m_statisticsCalculator->meanCellScalarValue( m_statsAllTimesteps.m_meanValue );
m_statsAllTimesteps.m_isMeanCalculated = true;
}
@@ -171,42 +169,41 @@ void RigStatisticsDataCache::meanCellScalarValues(double& meanValue)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::meanCellScalarValues(size_t timeStepIndex, double& meanValue)
void RigStatisticsDataCache::meanCellScalarValues( size_t timeStepIndex, double& meanValue )
{
if (timeStepIndex >= m_statsPrTs.size())
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize(timeStepIndex + 1);
m_statsPrTs.resize( timeStepIndex + 1 );
}
if (!m_statsPrTs[timeStepIndex].m_isMeanCalculated)
if ( !m_statsPrTs[timeStepIndex].m_isMeanCalculated )
{
m_statisticsCalculator->meanCellScalarValue(timeStepIndex, m_statsPrTs[timeStepIndex].m_meanValue);
m_statisticsCalculator->meanCellScalarValue( timeStepIndex, m_statsPrTs[timeStepIndex].m_meanValue );
m_statsPrTs[timeStepIndex].m_isMeanCalculated = true;
}
meanValue = m_statsPrTs[timeStepIndex].m_meanValue;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::sumCellScalarValues(double& sumValue)
void RigStatisticsDataCache::sumCellScalarValues( double& sumValue )
{
if (!m_statsAllTimesteps.m_isValueSumCalculated)
if ( !m_statsAllTimesteps.m_isValueSumCalculated )
{
double aggregatedSum = 0.0;
for (size_t i = 0; i < m_statisticsCalculator->timeStepCount(); i++)
for ( size_t i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double valueSum = 0.0;
this->sumCellScalarValues(i, valueSum);
this->sumCellScalarValues( i, valueSum );
aggregatedSum += valueSum;
}
m_statsAllTimesteps.m_valueSum = aggregatedSum;
m_statsAllTimesteps.m_valueSum = aggregatedSum;
m_statsAllTimesteps.m_isValueSumCalculated = true;
}
@@ -214,21 +211,21 @@ void RigStatisticsDataCache::sumCellScalarValues(double& sumValue)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::sumCellScalarValues(size_t timeStepIndex, double& sumValue)
void RigStatisticsDataCache::sumCellScalarValues( size_t timeStepIndex, double& sumValue )
{
if (timeStepIndex >= m_statsPrTs.size())
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize(timeStepIndex + 1);
m_statsPrTs.resize( timeStepIndex + 1 );
}
if (!m_statsPrTs[timeStepIndex].m_isValueSumCalculated)
if ( !m_statsPrTs[timeStepIndex].m_isValueSumCalculated )
{
double valueSum = 0.0;
double valueSum = 0.0;
size_t sampleCount = 0;
m_statisticsCalculator->valueSumAndSampleCount(timeStepIndex, valueSum, sampleCount);
m_statsPrTs[timeStepIndex].m_valueSum = valueSum;
m_statisticsCalculator->valueSumAndSampleCount( timeStepIndex, valueSum, sampleCount );
m_statsPrTs[timeStepIndex].m_valueSum = valueSum;
m_statsPrTs[timeStepIndex].m_isValueSumCalculated = true;
}
@@ -236,7 +233,7 @@ void RigStatisticsDataCache::sumCellScalarValues(size_t timeStepIndex, double& s
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram()
{
@@ -246,17 +243,17 @@ const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram()
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram(size_t timeStepIndex)
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram( size_t timeStepIndex )
{
computeHistogramStatisticsIfNeeded(timeStepIndex);
computeHistogramStatisticsIfNeeded( timeStepIndex );
return m_statsPrTs[timeStepIndex].m_histogram;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues()
{
@@ -266,41 +263,41 @@ const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues()
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues(size_t timeStepIndex)
const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues( size_t timeStepIndex )
{
computeUniqueValuesIfNeeded(timeStepIndex);
computeUniqueValuesIfNeeded( timeStepIndex );
return m_statsPrTs[timeStepIndex].m_uniqueValues;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::mobileVolumeWeightedMean(size_t timeStepIndex, double& mean)
void RigStatisticsDataCache::mobileVolumeWeightedMean( size_t timeStepIndex, double& mean )
{
if (timeStepIndex >= m_statsPrTs.size())
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize(timeStepIndex + 1);
m_statsPrTs.resize( timeStepIndex + 1 );
}
if (!m_statsPrTs[timeStepIndex].m_isVolumeWeightedMeanCalculated)
if ( !m_statsPrTs[timeStepIndex].m_isVolumeWeightedMeanCalculated )
{
m_statisticsCalculator->mobileVolumeWeightedMean(timeStepIndex, m_statsPrTs[timeStepIndex].m_volumeWeightedMean);
m_statisticsCalculator->mobileVolumeWeightedMean( timeStepIndex, m_statsPrTs[timeStepIndex].m_volumeWeightedMean );
}
mean = m_statsPrTs[timeStepIndex].m_volumeWeightedMean;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::mobileVolumeWeightedMean(double& mean)
void RigStatisticsDataCache::mobileVolumeWeightedMean( double& mean )
{
if (!m_statsAllTimesteps.m_isVolumeWeightedMeanCalculated)
if ( !m_statsAllTimesteps.m_isVolumeWeightedMeanCalculated )
{
m_statisticsCalculator->mobileVolumeWeightedMean(m_statsAllTimesteps.m_volumeWeightedMean);
m_statisticsCalculator->mobileVolumeWeightedMean( m_statsAllTimesteps.m_volumeWeightedMean );
m_statsAllTimesteps.m_isVolumeWeightedMeanCalculated = true;
}
@@ -309,9 +306,9 @@ void RigStatisticsDataCache::mobileVolumeWeightedMean(double& mean)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::p10p90CellScalarValues(double& p10, double& p90)
void RigStatisticsDataCache::p10p90CellScalarValues( double& p10, double& p90 )
{
computeHistogramStatisticsIfNeeded();
@@ -320,88 +317,89 @@ void RigStatisticsDataCache::p10p90CellScalarValues(double& p10, double& p90)
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::p10p90CellScalarValues(size_t timeStepIndex, double& p10, double& p90)
void RigStatisticsDataCache::p10p90CellScalarValues( size_t timeStepIndex, double& p10, double& p90 )
{
computeHistogramStatisticsIfNeeded(timeStepIndex);
computeHistogramStatisticsIfNeeded( timeStepIndex );
p10 = m_statsPrTs[timeStepIndex].m_p10;
p90 = m_statsPrTs[timeStepIndex].m_p90;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeHistogramStatisticsIfNeeded()
{
if (m_statsAllTimesteps.m_histogram.size() == 0)
if ( m_statsAllTimesteps.m_histogram.size() == 0 )
{
double min;
double max;
size_t nBins = 100;
this->minMaxCellScalarValues(min, max);
this->minMaxCellScalarValues( min, max );
RigHistogramCalculator histCalc(min, max, nBins, &m_statsAllTimesteps.m_histogram);
RigHistogramCalculator histCalc( min, max, nBins, &m_statsAllTimesteps.m_histogram );
m_statisticsCalculator->addDataToHistogramCalculator(histCalc);
m_statisticsCalculator->addDataToHistogramCalculator( histCalc );
m_statsAllTimesteps.m_p10 = histCalc.calculatePercentil(0.1);
m_statsAllTimesteps.m_p90 = histCalc.calculatePercentil(0.9);
m_statsAllTimesteps.m_p10 = histCalc.calculatePercentil( 0.1 );
m_statsAllTimesteps.m_p90 = histCalc.calculatePercentil( 0.9 );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeHistogramStatisticsIfNeeded(size_t timeStepIndex)
void RigStatisticsDataCache::computeHistogramStatisticsIfNeeded( size_t timeStepIndex )
{
if (m_statsPrTs[timeStepIndex].m_histogram.size() == 0)
if ( m_statsPrTs[timeStepIndex].m_histogram.size() == 0 )
{
double min;
double max;
size_t nBins = 100;
this->minMaxCellScalarValues(timeStepIndex, min, max);
this->minMaxCellScalarValues( timeStepIndex, min, max );
RigHistogramCalculator histCalc(min, max, nBins, &m_statsPrTs[timeStepIndex].m_histogram);
RigHistogramCalculator histCalc( min, max, nBins, &m_statsPrTs[timeStepIndex].m_histogram );
m_statisticsCalculator->addDataToHistogramCalculator(timeStepIndex, histCalc);
m_statisticsCalculator->addDataToHistogramCalculator( timeStepIndex, histCalc );
m_statsPrTs[timeStepIndex].m_p10 = histCalc.calculatePercentil(0.1);
m_statsPrTs[timeStepIndex].m_p90 = histCalc.calculatePercentil(0.9);
m_statsPrTs[timeStepIndex].m_p10 = histCalc.calculatePercentil( 0.1 );
m_statsPrTs[timeStepIndex].m_p90 = histCalc.calculatePercentil( 0.9 );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeUniqueValuesIfNeeded()
{
if (m_statsAllTimesteps.m_uniqueValues.size() == 0)
if ( m_statsAllTimesteps.m_uniqueValues.size() == 0 )
{
std::set<int> setValues;
m_statisticsCalculator->uniqueValues(0, setValues); // This is a Hack ! Only using first timestep. Ok for Static eclipse results but beware !
m_statisticsCalculator->uniqueValues( 0, setValues ); // This is a Hack ! Only using first timestep. Ok for
// Static eclipse results but beware !
for (auto val : setValues)
for ( auto val : setValues )
{
m_statsAllTimesteps.m_uniqueValues.push_back(val);
m_statsAllTimesteps.m_uniqueValues.push_back( val );
}
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeUniqueValuesIfNeeded(size_t timeStepIndex)
void RigStatisticsDataCache::computeUniqueValuesIfNeeded( size_t timeStepIndex )
{
if ( m_statsPrTs[timeStepIndex].m_uniqueValues.size() == 0 )
{
std::set<int> setValues;
m_statisticsCalculator->uniqueValues(timeStepIndex, setValues);
m_statisticsCalculator->uniqueValues( timeStepIndex, setValues );
for ( auto val : setValues )
{
m_statsPrTs[timeStepIndex].m_uniqueValues.push_back(val);
m_statsPrTs[timeStepIndex].m_uniqueValues.push_back( val );
}
}
}

View File

@@ -2,17 +2,17 @@
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
@@ -21,52 +21,51 @@
#include "RigStatisticsCalculator.h"
#include "cvfObject.h"
#include <vector>
#include <cmath> // Needed for HUGE_VAL on Linux
#include <vector>
//==================================================================================================
///
///
//==================================================================================================
class RigStatisticsDataCache : public cvf::Object
{
public:
explicit RigStatisticsDataCache(RigStatisticsCalculator* statisticsCalculator);
explicit RigStatisticsDataCache( RigStatisticsCalculator* statisticsCalculator );
void clearAllStatistics();
void clearAllStatistics();
void minMaxCellScalarValues(double& min, double& max);
void minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max);
void minMaxCellScalarValues( double& min, double& max );
void minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max );
void posNegClosestToZero(double& pos, double& neg);
void posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg);
void posNegClosestToZero( double& pos, double& neg );
void posNegClosestToZero( size_t timeStepIndex, double& pos, double& neg );
void p10p90CellScalarValues(double& p10, double& p90);
void p10p90CellScalarValues(size_t timeStepIndex, double& p10, double& p90);
void p10p90CellScalarValues( double& p10, double& p90 );
void p10p90CellScalarValues( size_t timeStepIndex, double& p10, double& p90 );
void meanCellScalarValues(double& meanValue);
void meanCellScalarValues(size_t timeStepIndex, double& meanValue);
void meanCellScalarValues( double& meanValue );
void meanCellScalarValues( size_t timeStepIndex, double& meanValue );
void sumCellScalarValues(double& sumValue);
void sumCellScalarValues(size_t timeStepIndex, double& sumValue);
void sumCellScalarValues( double& sumValue );
void sumCellScalarValues( size_t timeStepIndex, double& sumValue );
const std::vector<size_t>& cellScalarValuesHistogram();
const std::vector<size_t>& cellScalarValuesHistogram(size_t timeStepIndex);
const std::vector<size_t>& cellScalarValuesHistogram();
const std::vector<size_t>& cellScalarValuesHistogram( size_t timeStepIndex );
const std::vector<int>& uniqueCellScalarValues();
const std::vector<int>& uniqueCellScalarValues(size_t timeStepIndex);
void mobileVolumeWeightedMean(double& mean);
void mobileVolumeWeightedMean(size_t timeStepIndex, double& mean);
const std::vector<int>& uniqueCellScalarValues();
const std::vector<int>& uniqueCellScalarValues( size_t timeStepIndex );
void mobileVolumeWeightedMean( double& mean );
void mobileVolumeWeightedMean( size_t timeStepIndex, double& mean );
private:
void computeHistogramStatisticsIfNeeded();
void computeHistogramStatisticsIfNeeded(size_t timeStepIndex);
void computeHistogramStatisticsIfNeeded();
void computeHistogramStatisticsIfNeeded( size_t timeStepIndex );
void computeUniqueValuesIfNeeded();
void computeUniqueValuesIfNeeded(size_t timeStepIndex);
void computeUniqueValuesIfNeeded();
void computeUniqueValuesIfNeeded( size_t timeStepIndex );
private:
struct StatisticsValues
@@ -89,34 +88,32 @@ private:
m_isVolumeWeightedMeanCalculated = false;
}
double m_minValue;
double m_maxValue;
bool m_isMaxMinCalculated;
double m_meanValue;
bool m_isMeanCalculated;
double m_minValue;
double m_maxValue;
bool m_isMaxMinCalculated;
double m_posClosestToZero;
double m_negClosestToZero;
bool m_isClosestToZeroCalculated;
double m_p10;
double m_p90;
double m_meanValue;
bool m_isMeanCalculated;
double m_valueSum;
bool m_isValueSumCalculated;
double m_posClosestToZero;
double m_negClosestToZero;
bool m_isClosestToZeroCalculated;
double m_volumeWeightedMean;
bool m_isVolumeWeightedMeanCalculated;
double m_p10;
double m_p90;
double m_valueSum;
bool m_isValueSumCalculated;
double m_volumeWeightedMean;
bool m_isVolumeWeightedMeanCalculated;
std::vector<size_t> m_histogram;
std::vector<int> m_uniqueValues;
};
StatisticsValues m_statsAllTimesteps;
std::vector<StatisticsValues> m_statsPrTs;
StatisticsValues m_statsAllTimesteps;
std::vector<StatisticsValues> m_statsPrTs;
cvf::ref<RigStatisticsCalculator> m_statisticsCalculator;
cvf::ref<RigStatisticsCalculator> m_statisticsCalculator;
};

View File

@@ -1,24 +1,23 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigStatisticsMath.h"
#include "cvfMath.h"
#include <algorithm>
@@ -26,70 +25,67 @@
#include <math.h>
//--------------------------------------------------------------------------------------------------
/// A function to do basic statistical calculations
/// A function to do basic statistical calculations
//--------------------------------------------------------------------------------------------------
void RigStatisticsMath::calculateBasicStatistics(const std::vector<double>& values, double* min, double* max, double* sum, double* range, double* mean, double* dev)
void RigStatisticsMath::calculateBasicStatistics(
const std::vector<double>& values, double* min, double* max, double* sum, double* range, double* mean, double* dev )
{
double m_min(HUGE_VAL);
double m_max(-HUGE_VAL);
double m_mean(HUGE_VAL);
double m_dev(HUGE_VAL);
double m_min( HUGE_VAL );
double m_max( -HUGE_VAL );
double m_mean( HUGE_VAL );
double m_dev( HUGE_VAL );
double m_sum = 0.0;
double m_sum = 0.0;
double sumSquared = 0.0;
size_t validValueCount = 0;
for (size_t i = 0; i < values.size(); i++)
for ( size_t i = 0; i < values.size(); i++ )
{
double val = values[i];
if (RiaStatisticsTools::isInvalidNumber<double>(val)) continue;
if ( RiaStatisticsTools::isInvalidNumber<double>( val ) ) continue;
validValueCount++;
if (val < m_min) m_min = val;
if (val > m_max) m_max = val;
if ( val < m_min ) m_min = val;
if ( val > m_max ) m_max = val;
m_sum += val;
sumSquared += (val * val);
sumSquared += ( val * val );
}
if (validValueCount > 0)
if ( validValueCount > 0 )
{
m_mean = m_sum / validValueCount;
// http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
// Running standard deviation
double s0 = static_cast<double>(validValueCount);
double s0 = static_cast<double>( validValueCount );
double s1 = m_sum;
double s2 = sumSquared;
m_dev = sqrt( (s0 * s2) - (s1 * s1) ) / s0;
m_dev = sqrt( ( s0 * s2 ) - ( s1 * s1 ) ) / s0;
}
if (min) *min = m_min;
if (max) *max = m_max;
if (sum) *sum = m_sum;
if (range) *range = m_max - m_min;
if ( min ) *min = m_min;
if ( max ) *max = m_max;
if ( sum ) *sum = m_sum;
if ( range ) *range = m_max - m_min;
if (mean) *mean = m_mean;
if (dev) *dev = m_dev;
if ( mean ) *mean = m_mean;
if ( dev ) *dev = m_dev;
}
//--------------------------------------------------------------------------------------------------
/// Algorithm:
/// https://en.wikipedia.org/wiki/Percentile#Third_variant,_'%22%60UNIQ--postMath-00000052-QINU%60%22'
//--------------------------------------------------------------------------------------------------
void RigStatisticsMath::calculateStatisticsCurves(const std::vector<double>& values,
double* p10,
double* p50,
double* p90,
double* mean)
void RigStatisticsMath::calculateStatisticsCurves(
const std::vector<double>& values, double* p10, double* p50, double* p90, double* mean )
{
CVF_ASSERT(p10 && p50 && p90 && mean);
CVF_ASSERT( p10 && p50 && p90 && mean );
enum PValue
{
@@ -102,12 +98,12 @@ void RigStatisticsMath::calculateStatisticsCurves(const std::vector<double>& val
double valueSum = 0;
{
std::multiset<double> vSet(values.begin(), values.end());
for (double v : vSet)
std::multiset<double> vSet( values.begin(), values.end() );
for ( double v : vSet )
{
if (RiaStatisticsTools::isValidNumber(v))
if ( RiaStatisticsTools::isValidNumber( v ) )
{
sortedValues.push_back(v);
sortedValues.push_back( v );
valueSum += v;
}
}
@@ -117,21 +113,21 @@ void RigStatisticsMath::calculateStatisticsCurves(const std::vector<double>& val
double percentiles[] = {0.1, 0.5, 0.9};
double pValues[] = {HUGE_VAL, HUGE_VAL, HUGE_VAL};
for (int i = P10; i <= P90; i++)
for ( int i = P10; i <= P90; i++ )
{
// Check valid params
if ((percentiles[i] < 1.0 / ((double)valueCount + 1)) || (percentiles[i] > (double)valueCount / ((double)valueCount + 1)))
if ( ( percentiles[i] < 1.0 / ( (double)valueCount + 1 ) ) ||
( percentiles[i] > (double)valueCount / ( (double)valueCount + 1 ) ) )
continue;
double rank = percentiles[i] * (valueCount + 1) - 1;
double rank = percentiles[i] * ( valueCount + 1 ) - 1;
double rankRem;
double rankFrac = std::modf(rank, &rankRem);
int rankInt = static_cast<int>(rankRem);
double rankFrac = std::modf( rank, &rankRem );
int rankInt = static_cast<int>( rankRem );
if (rankInt < valueCount - 1)
if ( rankInt < valueCount - 1 )
{
pValues[i] = sortedValues[rankInt] + rankFrac * (sortedValues[rankInt + 1] - sortedValues[rankInt]);
pValues[i] = sortedValues[rankInt] + rankFrac * ( sortedValues[rankInt + 1] - sortedValues[rankInt] );
}
else
{
@@ -151,33 +147,34 @@ void RigStatisticsMath::calculateStatisticsCurves(const std::vector<double>& val
/// the inputValues does not contain any valid values
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions)
std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions )
{
std::vector<double> sortedValues;
sortedValues.reserve(inputValues.size());
sortedValues.reserve( inputValues.size() );
for (size_t i = 0; i < inputValues.size(); ++i)
for ( size_t i = 0; i < inputValues.size(); ++i )
{
if (RiaStatisticsTools::isValidNumber<double>(inputValues[i]))
if ( RiaStatisticsTools::isValidNumber<double>( inputValues[i] ) )
{
sortedValues.push_back(inputValues[i]);
sortedValues.push_back( inputValues[i] );
}
}
std::sort(sortedValues.begin(), sortedValues.end());
std::sort( sortedValues.begin(), sortedValues.end() );
std::vector<double> percentiles(pValPositions.size(), HUGE_VAL);
if (sortedValues.size())
std::vector<double> percentiles( pValPositions.size(), HUGE_VAL );
if ( sortedValues.size() )
{
for (size_t i = 0; i < pValPositions.size(); ++i)
for ( size_t i = 0; i < pValPositions.size(); ++i )
{
double pVal = HUGE_VAL;
size_t pValIndex = static_cast<size_t>(sortedValues.size() * cvf::Math::abs(pValPositions[i]) / 100);
size_t pValIndex = static_cast<size_t>( sortedValues.size() * cvf::Math::abs( pValPositions[i] ) / 100 );
if (pValIndex >= sortedValues.size() ) pValIndex = sortedValues.size() - 1;
if ( pValIndex >= sortedValues.size() ) pValIndex = sortedValues.size() - 1;
pVal = sortedValues[pValIndex];
pVal = sortedValues[pValIndex];
percentiles[i] = pVal;
}
}
@@ -190,39 +187,41 @@ std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles(const std
/// This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
/// the inputValues does not contain any valid values
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStatisticsMath::calculateInterpolatedPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions)
std::vector<double> RigStatisticsMath::calculateInterpolatedPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions )
{
std::vector<double> sortedValues;
sortedValues.reserve(inputValues.size());
sortedValues.reserve( inputValues.size() );
for (size_t i = 0; i < inputValues.size(); ++i)
for ( size_t i = 0; i < inputValues.size(); ++i )
{
if (RiaStatisticsTools::isValidNumber<double>(inputValues[i]))
if ( RiaStatisticsTools::isValidNumber<double>( inputValues[i] ) )
{
sortedValues.push_back(inputValues[i]);
sortedValues.push_back( inputValues[i] );
}
}
std::sort(sortedValues.begin(), sortedValues.end());
std::sort( sortedValues.begin(), sortedValues.end() );
std::vector<double> percentiles(pValPositions.size(), HUGE_VAL);
if (sortedValues.size())
std::vector<double> percentiles( pValPositions.size(), HUGE_VAL );
if ( sortedValues.size() )
{
for (size_t i = 0; i < pValPositions.size(); ++i)
for ( size_t i = 0; i < pValPositions.size(); ++i )
{
double pVal = HUGE_VAL;
double doubleIndex = (sortedValues.size() - 1) * cvf::Math::abs(pValPositions[i]) / 100.0;
double doubleIndex = ( sortedValues.size() - 1 ) * cvf::Math::abs( pValPositions[i] ) / 100.0;
size_t lowerValueIndex = static_cast<size_t>(floor(doubleIndex));
size_t lowerValueIndex = static_cast<size_t>( floor( doubleIndex ) );
size_t upperValueIndex = lowerValueIndex + 1;
double upperValueWeight = doubleIndex - lowerValueIndex;
assert(upperValueWeight < 1.0);
assert( upperValueWeight < 1.0 );
if (upperValueIndex < sortedValues.size())
if ( upperValueIndex < sortedValues.size() )
{
pVal = (1.0 - upperValueWeight) * sortedValues[lowerValueIndex] + upperValueWeight * sortedValues[upperValueIndex];
pVal = ( 1.0 - upperValueWeight ) * sortedValues[lowerValueIndex] +
upperValueWeight * sortedValues[upperValueIndex];
}
else
{
@@ -236,101 +235,105 @@ std::vector<double> RigStatisticsMath::calculateInterpolatedPercentiles(const st
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
RigHistogramCalculator::RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram)
RigHistogramCalculator::RigHistogramCalculator( double min, double max, size_t nBins, std::vector<size_t>* histogram )
{
assert(histogram);
assert(nBins > 0);
assert( histogram );
assert( nBins > 0 );
if (max == min) { nBins = 1; } // Avoid dividing on 0 range
if ( max == min )
{
nBins = 1;
} // Avoid dividing on 0 range
m_histogram = histogram;
m_min = min;
m_histogram = histogram;
m_min = min;
m_observationCount = 0;
// Initialize bins
m_histogram->resize(nBins);
for (size_t i = 0; i < m_histogram->size(); ++i) (*m_histogram)[i] = 0;
m_histogram->resize( nBins );
for ( size_t i = 0; i < m_histogram->size(); ++i )
( *m_histogram )[i] = 0;
m_range = max - min;
m_maxIndex = nBins-1;
m_range = max - min;
m_maxIndex = nBins - 1;
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addValue(double value)
void RigHistogramCalculator::addValue( double value )
{
if (RiaStatisticsTools::isInvalidNumber<double>(value)) return;
if ( RiaStatisticsTools::isInvalidNumber<double>( value ) ) return;
size_t index = 0;
if (m_maxIndex > 0) index = (size_t)(m_maxIndex*(value - m_min)/m_range);
if ( m_maxIndex > 0 ) index = ( size_t )( m_maxIndex * ( value - m_min ) / m_range );
if (index < m_histogram->size()) // Just clip to the max min range (-index will overflow to positive )
if ( index < m_histogram->size() ) // Just clip to the max min range (-index will overflow to positive )
{
(*m_histogram)[index]++;
( *m_histogram )[index]++;
m_observationCount++;
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addData(const std::vector<double>& data)
void RigHistogramCalculator::addData( const std::vector<double>& data )
{
assert(m_histogram);
for (size_t i = 0; i < data.size(); ++i)
assert( m_histogram );
for ( size_t i = 0; i < data.size(); ++i )
{
addValue(data[i]);
addValue( data[i] );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addData(const std::vector<float>& data)
void RigHistogramCalculator::addData( const std::vector<float>& data )
{
assert(m_histogram);
for (size_t i = 0; i < data.size(); ++i)
assert( m_histogram );
for ( size_t i = 0; i < data.size(); ++i )
{
addValue(data[i]);
addValue( data[i] );
}
}
//--------------------------------------------------------------------------------------------------
///
///
//--------------------------------------------------------------------------------------------------
double RigHistogramCalculator::calculatePercentil(double pVal)
double RigHistogramCalculator::calculatePercentil( double pVal )
{
assert(m_histogram);
assert(m_histogram->size());
assert( 0.0 <= pVal && pVal <= 1.0);
assert( m_histogram );
assert( m_histogram->size() );
assert( 0.0 <= pVal && pVal <= 1.0 );
double pValObservationCount = pVal*m_observationCount;
if (pValObservationCount == 0.0) return m_min;
double pValObservationCount = pVal * m_observationCount;
if ( pValObservationCount == 0.0 ) return m_min;
size_t accObsCount = 0;
double binWidth = m_range/m_histogram->size();
for (size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx)
double binWidth = m_range / m_histogram->size();
for ( size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx )
{
size_t binObsCount = (*m_histogram)[binIdx];
size_t binObsCount = ( *m_histogram )[binIdx];
accObsCount += binObsCount;
if (accObsCount >= pValObservationCount)
if ( accObsCount >= pValObservationCount )
{
double domainValueAtEndOfBin = m_min + (binIdx+1) * binWidth;
double unusedFractionOfLastBin = (double)(accObsCount - pValObservationCount)/binObsCount;
double domainValueAtEndOfBin = m_min + ( binIdx + 1 ) * binWidth;
double unusedFractionOfLastBin = (double)( accObsCount - pValObservationCount ) / binObsCount;
double histogramBasedEstimate = domainValueAtEndOfBin - unusedFractionOfLastBin*binWidth;
double histogramBasedEstimate = domainValueAtEndOfBin - unusedFractionOfLastBin * binWidth;
// See https://resinsight.org/docs/casegroupsandstatistics/#percentile-methods for details
return histogramBasedEstimate;
}
}
assert(false);
assert( false );
return HUGE_VAL;
}

View File

@@ -1,17 +1,17 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
@@ -19,19 +19,28 @@
#include "RiaStatisticsTools.h"
#include <vector>
#include <set>
#include <cmath>
#include <cstddef>
#include <set>
#include <vector>
class RigStatisticsMath
{
public:
static void calculateBasicStatistics(const std::vector<double>& values, double* min, double* max, double* sum, double* range, double* mean, double* dev);
static void calculateStatisticsCurves(const std::vector<double>& values, double* p10, double* p50, double* p90, double* mean);
static void calculateBasicStatistics( const std::vector<double>& values,
double* min,
double* max,
double* sum,
double* range,
double* mean,
double* dev );
static void calculateStatisticsCurves(
const std::vector<double>& values, double* p10, double* p50, double* p90, double* mean );
static std::vector<double> calculateNearestRankPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions);
static std::vector<double> calculateInterpolatedPercentiles(const std::vector<double> & inputValues, const std::vector<double>& pValPositions);
static std::vector<double> calculateNearestRankPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions );
static std::vector<double> calculateInterpolatedPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions );
};
//==================================================================================================
@@ -41,59 +50,62 @@ public:
class RigHistogramCalculator
{
public:
RigHistogramCalculator(double min, double max, size_t nBins, std::vector<size_t>* histogram);
RigHistogramCalculator( double min, double max, size_t nBins, std::vector<size_t>* histogram );
void addData(const std::vector<double>& data);
void addData(const std::vector<float>& data);
void addData( const std::vector<double>& data );
void addData( const std::vector<float>& data );
void addValue(double value);
void addValue( double value );
/// Calculates the estimated percentile from the histogram.
/// Calculates the estimated percentile from the histogram.
/// the percentile is the domain value at which pVal of the observations are below it.
/// Will only consider observed values between min and max, as all other values are discarded from the histogram
double calculatePercentil(double pVal);
double calculatePercentil( double pVal );
private:
size_t m_maxIndex;
double m_range;
double m_min;
size_t m_observationCount;
size_t m_maxIndex;
double m_range;
double m_min;
size_t m_observationCount;
std::vector<size_t>* m_histogram;
};
class MinMaxAccumulator
{
public:
MinMaxAccumulator(double initMin = HUGE_VAL, double initMax = -HUGE_VAL): max(initMax), min(initMin) {}
void addData(const std::vector<double>& values)
MinMaxAccumulator( double initMin = HUGE_VAL, double initMax = -HUGE_VAL )
: max( initMax )
, min( initMin )
{
}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue(val);
addValue( val );
}
}
void addData(const std::vector<float>& values)
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue(val);
addValue( val );
}
}
void addValue(double value)
void addValue( double value )
{
if (RiaStatisticsTools::isValidNumber<double>(value))
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
if (value < min)
if ( value < min )
{
min = value;
}
if (value > max)
if ( value > max )
{
max = value;
}
@@ -104,38 +116,41 @@ public:
double min;
};
class PosNegAccumulator
{
public:
PosNegAccumulator(double initPos = HUGE_VAL, double initNeg = -HUGE_VAL): pos(initPos), neg(initNeg) {}
void addData(const std::vector<double>& values)
PosNegAccumulator( double initPos = HUGE_VAL, double initNeg = -HUGE_VAL )
: pos( initPos )
, neg( initNeg )
{
for (double val : values)
}
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue(val);
addValue( val );
}
}
void addData(const std::vector<float>& values)
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue(val);
addValue( val );
}
}
void addValue(double value)
void addValue( double value )
{
if (RiaStatisticsTools::isValidNumber<double>(value))
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
if (value < pos && value > 0)
if ( value < pos && value > 0 )
{
pos = value;
}
if (value > neg && value < 0)
if ( value > neg && value < 0 )
{
neg = value;
}
@@ -146,31 +161,34 @@ public:
double neg;
};
class SumCountAccumulator
{
public:
SumCountAccumulator(double initSum = 0.0, size_t initCount = 0): valueSum(initSum), sampleCount(initCount) {}
SumCountAccumulator( double initSum = 0.0, size_t initCount = 0 )
: valueSum( initSum )
, sampleCount( initCount )
{
}
void addData(const std::vector<double>& values)
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue(val);
addValue( val );
}
}
void addData(const std::vector<float>& values)
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue(val);
addValue( val );
}
}
void addValue(double value)
void addValue( double value )
{
if (RiaStatisticsTools::isValidNumber<double>(value))
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
valueSum += value;
++sampleCount;
@@ -181,34 +199,32 @@ public:
size_t sampleCount;
};
class UniqueValueAccumulator
{
public:
UniqueValueAccumulator()
{}
UniqueValueAccumulator() {}
void addData(const std::vector<double>& values)
void addData( const std::vector<double>& values )
{
for ( double val : values )
{
addValue(val);
addValue( val );
}
}
void addData(const std::vector<float>& values)
void addData( const std::vector<float>& values )
{
for ( float val : values )
{
addValue(val);
addValue( val );
}
}
void addValue(double value)
void addValue( double value )
{
if (RiaStatisticsTools::isValidNumber<double>(value))
if ( RiaStatisticsTools::isValidNumber<double>( value ) )
{
uniqueValues.insert(static_cast<int>(value));
uniqueValues.insert( static_cast<int>( value ) );
}
}