#2841 Fix bad result when z-clipping is applied.

This commit is contained in:
Gaute Lindkvist 2018-05-02 14:01:50 +02:00
parent 98af9e00ab
commit ffccb078e8
2 changed files with 169 additions and 139 deletions

View File

@ -73,8 +73,9 @@ Riv3dWellLogDrawSurfaceGenerator::createDrawSurface(const caf::DisplayCoordTrans
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
if (wellPathPoints.empty())
if (wellPathPoints.size() < (size_t)2)
{
// Need at least two well path points to create a valid path.
return false;
}
@ -83,154 +84,46 @@ Riv3dWellLogDrawSurfaceGenerator::createDrawSurface(const caf::DisplayCoordTrans
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
}
std::vector<cvf::Vec3d> segmentNormals =
std::vector<cvf::Vec3d> wellPathSegmentNormals =
RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, planeAngle);
size_t originalWellPathSize = wellPathPoints.size();
size_t indexToFirstVisibleSegment = 0u;
if (wellPathCollection->wellPathClip)
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
double horizontalLengthAlongWellToClipPoint;
cvf::Vec3d clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
cvf::Vec3d clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
size_t indexToFirstVisibleSegment;
double horizontalLengthAlongWellToClipPoint;
wellPathPoints = RigWellPath::clipPolylineStartAboveZ(
wellPathPoints, clipLocation.z(), &horizontalLengthAlongWellToClipPoint, &indexToFirstVisibleSegment);
}
// Create curve normal vectors using the unclipped well path points and normals.
createCurveNormalVectors(displayCoordTransform, indexToFirstVisibleSegment, planeOffsetFromWellPathCenter, planeWidth, samplingIntervalSize, wellPathSegmentNormals);
if (wellPathPoints.size() < (size_t) 2)
// Note that normals are calculated on the full non-clipped well path. So we need to clip the remainder here.
wellPathSegmentNormals.erase(wellPathSegmentNormals.begin(), wellPathSegmentNormals.end() - wellPathPoints.size());
if (wellPathPoints.size() < (size_t)2)
{
// Need at least two well path points to create a valid path.
return false;
}
// Note that normals are calculated on the full non-clipped well path to increase the likelihood of creating good normals
// for the end points of the curve. So we need to clip the remainder here.
segmentNormals.erase(segmentNormals.begin(), segmentNormals.end() - wellPathPoints.size());
m_vertices.reserve(wellPathPoints.size() * 2);
for (size_t i = 0; i < wellPathPoints.size(); i++)
{
m_vertices.reserve(wellPathPoints.size() * 2);
std::vector<cvf::uint> backgroundIndices;
backgroundIndices.reserve(wellPathPoints.size() * 2);
// Vertices are used for both surface and border
for (size_t i = 0; i < wellPathPoints.size(); i++)
{
m_vertices.push_back(cvf::Vec3f(
wellPathPoints[i] + segmentNormals[i] * planeOffsetFromWellPathCenter));
m_vertices.push_back(cvf::Vec3f(
wellPathPoints[i] + segmentNormals[i] * (planeOffsetFromWellPathCenter + planeWidth)));
backgroundIndices.push_back((cvf::uint) (2 * i));
backgroundIndices.push_back((cvf::uint) (2 * i + 1));
}
m_vertices.push_back(cvf::Vec3f(
wellPathPoints[i] + wellPathSegmentNormals[i] * planeOffsetFromWellPathCenter));
m_vertices.push_back(cvf::Vec3f(
wellPathPoints[i] + wellPathSegmentNormals[i] * (planeOffsetFromWellPathCenter + planeWidth)));
}
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_vertices);
{
// Background specific
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_TRIANGLE_STRIP);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(backgroundIndices);
indexedUInt->setIndices(indexArray.p());
m_background = new cvf::DrawableGeo();
m_background->addPrimitiveSet(indexedUInt.p());
m_background->setVertexArray(vertexArray.p());
}
{
std::vector<cvf::uint> borderIndices;
borderIndices.reserve(m_vertices.size());
int secondLastEvenVertex = (int) m_vertices.size() - 4;
// Border close to the well. All even indices.
for (int i = 0; i <= secondLastEvenVertex; i += 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i+2);
}
// Connect to border away from well
borderIndices.push_back((cvf::uint) (m_vertices.size() - 2));
borderIndices.push_back((cvf::uint) (m_vertices.size() - 1));
int secondOddVertex = 3;
int lastOddVertex = (int) m_vertices.size() - 1;
// Border away from from well are odd indices in reverse order to create a closed surface.
for (int i = lastOddVertex; i >= secondOddVertex; i -= 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i - 2);
}
// Close border
borderIndices.push_back(1u);
borderIndices.push_back(0u);
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(borderIndices);
indexedUInt->setIndices(indexArray.p());
m_border = new cvf::DrawableGeo();
m_border->addPrimitiveSet(indexedUInt.p());
m_border->setVertexArray(vertexArray.p());
}
}
{
std::vector<cvf::Vec3d> interpolatedGridPoints;
std::vector<cvf::Vec3d> interpolatedGridCurveNormals;
size_t newStartIndex = originalWellPathSize - wellPathPoints.size();
double firstMd = wellPathGeometry()->m_measuredDepths.at(newStartIndex);
double lastMd = wellPathGeometry()->m_measuredDepths.back();
double md = lastMd;
while (md >= firstMd)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathPoints, md);
cvf::Vec3d curveNormal = wellPathGeometry()->interpolatedVectorAlongWellPath(segmentNormals, md);
interpolatedGridPoints.push_back(point);
interpolatedGridCurveNormals.push_back(curveNormal.getNormalized());
md -= samplingIntervalSize;
}
std::vector<cvf::Vec3f> arrowVertices;
std::vector<cvf::Vec3f> arrowVectors;
arrowVertices.reserve(interpolatedGridPoints.size());
arrowVectors.reserve(interpolatedGridPoints.size());
double shaftRelativeRadius = 0.0125f;
double arrowHeadRelativeRadius = shaftRelativeRadius * 3;
double arrowHeadRelativeLength = arrowHeadRelativeRadius * 3;
double totalArrowScaling = 1.0 / (1.0 - arrowHeadRelativeLength);
// Normal lines. Start from one to avoid drawing at surface edge.
for (size_t i = 1; i < interpolatedGridCurveNormals.size(); i++)
{
arrowVertices.push_back(cvf::Vec3f(interpolatedGridPoints[i] + interpolatedGridCurveNormals[i] * planeOffsetFromWellPathCenter));
arrowVectors.push_back(cvf::Vec3f(interpolatedGridCurveNormals[i] * planeWidth * totalArrowScaling));
}
m_curveNormalVectors = new cvf::DrawableVectors();
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(arrowVertices);
cvf::ref<cvf::Vec3fArray> vectorArray = new cvf::Vec3fArray(arrowVectors);
// Create the arrow glyph for the vector drawer
cvf::GeometryBuilderTriangles arrowBuilder;
cvf::ArrowGenerator gen;
gen.setShaftRelativeRadius(shaftRelativeRadius);
gen.setHeadRelativeRadius(arrowHeadRelativeRadius);
gen.setHeadRelativeLength(arrowHeadRelativeLength);
gen.setNumSlices(4);
gen.generate(&arrowBuilder);
m_curveNormalVectors->setGlyph(arrowBuilder.trianglesUShort().p(), arrowBuilder.vertices().p());
m_curveNormalVectors->setVectors(vertexArray.p(), vectorArray.p());
}
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_vertices);
createBackground(vertexArray.p());
createBorder(vertexArray.p());
return true;
}
@ -277,6 +170,133 @@ const std::vector<cvf::Vec3f>& Riv3dWellLogDrawSurfaceGenerator::vertices() cons
return m_vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createCurveNormalVectors(const caf::DisplayCoordTransform* displayCoordTransform,
size_t clipStartIndex,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize,
const std::vector<cvf::Vec3d>& segmentNormals)
{
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedWellPathNormals;
double firstMd = wellPathGeometry()->m_measuredDepths.at(clipStartIndex);
double lastMd = wellPathGeometry()->m_measuredDepths.back();
double md = lastMd;
while (md >= firstMd)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedPointAlongWellPath(md);
point = displayCoordTransform->transformToDisplayCoord(point);
cvf::Vec3d curveNormal = wellPathGeometry()->interpolatedVectorAlongWellPath(segmentNormals, md);
interpolatedWellPathPoints.push_back(point);
interpolatedWellPathNormals.push_back(curveNormal.getNormalized());
md -= samplingIntervalSize;
}
std::vector<cvf::Vec3f> arrowVertices;
std::vector<cvf::Vec3f> arrowVectors;
arrowVertices.reserve(interpolatedWellPathPoints.size());
arrowVectors.reserve(interpolatedWellPathPoints.size());
double shaftRelativeRadius = 0.0125f;
double arrowHeadRelativeRadius = shaftRelativeRadius * 3;
double arrowHeadRelativeLength = arrowHeadRelativeRadius * 3;
double totalArrowScaling = 1.0 / (1.0 - arrowHeadRelativeLength);
// Normal lines. Start from one to avoid drawing at surface edge.
for (size_t i = 1; i < interpolatedWellPathNormals.size(); i++)
{
arrowVertices.push_back(cvf::Vec3f(interpolatedWellPathPoints[i] + interpolatedWellPathNormals[i] * planeOffsetFromWellPathCenter));
arrowVectors.push_back(cvf::Vec3f(interpolatedWellPathNormals[i] * planeWidth * totalArrowScaling));
}
m_curveNormalVectors = new cvf::DrawableVectors();
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(arrowVertices);
cvf::ref<cvf::Vec3fArray> vectorArray = new cvf::Vec3fArray(arrowVectors);
// Create the arrow glyph for the vector drawer
cvf::GeometryBuilderTriangles arrowBuilder;
cvf::ArrowGenerator gen;
gen.setShaftRelativeRadius(shaftRelativeRadius);
gen.setHeadRelativeRadius(arrowHeadRelativeRadius);
gen.setHeadRelativeLength(arrowHeadRelativeLength);
gen.setNumSlices(4);
gen.generate(&arrowBuilder);
m_curveNormalVectors->setGlyph(arrowBuilder.trianglesUShort().p(), arrowBuilder.vertices().p());
m_curveNormalVectors->setVectors(vertexArray.p(), vectorArray.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBackground(cvf::Vec3fArray* vertexArray)
{
std::vector<cvf::uint> backgroundIndices;
backgroundIndices.reserve(vertexArray->size());
for (size_t i = 0; i < vertexArray->size(); ++i)
{
backgroundIndices.push_back((cvf::uint) (i));
}
// Background specific
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_TRIANGLE_STRIP);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(backgroundIndices);
indexedUInt->setIndices(indexArray.p());
m_background = new cvf::DrawableGeo();
m_background->addPrimitiveSet(indexedUInt.p());
m_background->setVertexArray(vertexArray);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBorder(cvf::Vec3fArray* vertexArray)
{
std::vector<cvf::uint> borderIndices;
borderIndices.reserve(m_vertices.size());
int secondLastEvenVertex = (int)vertexArray->size() - 4;
// Border close to the well. All even indices.
for (int i = 0; i <= secondLastEvenVertex; i += 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i + 2);
}
// Connect to border away from well
borderIndices.push_back((cvf::uint) (vertexArray->size() - 2));
borderIndices.push_back((cvf::uint) (vertexArray->size() - 1));
int secondOddVertex = 3;
int lastOddVertex = (int)vertexArray->size() - 1;
// Border away from from well are odd indices in reverse order to create a closed surface.
for (int i = lastOddVertex; i >= secondOddVertex; i -= 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i - 2);
}
// Close border
borderIndices.push_back(1u);
borderIndices.push_back(0u);
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(borderIndices);
indexedUInt->setIndices(indexArray.p());
m_border = new cvf::DrawableGeo();
m_border->addPrimitiveSet(indexedUInt.p());
m_border->setVertexArray(vertexArray);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -45,13 +45,13 @@ class Riv3dWellLogDrawSurfaceGenerator : public cvf::Object
public:
Riv3dWellLogDrawSurfaceGenerator(RimWellPath* wellPath);
bool createDrawSurface(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
double planeAngle,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize);
bool createDrawSurface(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
double planeAngle,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize);
void clearGeometry();
cvf::ref<cvf::DrawableGeo> background() const;
@ -61,6 +61,16 @@ public:
const std::vector<cvf::Vec3f>& vertices() const;
private:
void createCurveNormalVectors(const caf::DisplayCoordTransform* displayCoordTransform,
size_t clipStartIndex,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize,
const std::vector<cvf::Vec3d>& wellPathSegmentNormals);
void createBackground(cvf::Vec3fArray* vertexArray);
void createBorder(cvf::Vec3fArray* vertexArray);
const RigWellPath* wellPathGeometry() const;
private: