///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2018- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigEclipseToStimPlanCalculator.h" #include "RiaLogging.h" #include "RiaThermalFractureDefines.h" #include "RiaWeightedMeanCalculator.h" #include "RigActiveCellInfo.h" #include "RigCaseCellResultsData.h" #include "RigCellGeometryTools.h" #include "RigEclipseCaseData.h" #include "RigEclipseToStimPlanCellTransmissibilityCalculator.h" #include "RigEclipseToThermalCellTransmissibilityCalculator.h" #include "RigFractureCell.h" #include "RigFractureGrid.h" #include "RigFractureTransmissibilityEquations.h" #include "RigHexIntersectionTools.h" #include "RigMainGrid.h" #include "RigResultAccessorFactory.h" #include "RigThermalFractureDefinition.h" #include "RigTransmissibilityCondenser.h" #include "RimEclipseCase.h" #include "RimEllipseFractureTemplate.h" #include "RimFracture.h" #include "RimFractureContainmentTools.h" #include "RimMeshFractureTemplate.h" #include "RimThermalFractureTemplate.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigEclipseToStimPlanCalculator::RigEclipseToStimPlanCalculator( const RimEclipseCase* caseToApply, cvf::Mat4d fractureTransform, double skinFactor, double cDarcy, const RigFractureGrid& fractureGrid, const RimFracture* fracture ) : m_case( caseToApply ) , m_fractureTransform( fractureTransform ) , m_fractureSkinFactor( skinFactor ) , m_cDarcy( cDarcy ) , m_fractureGrid( fractureGrid ) , m_fracture( fracture ) { computeValues(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigEclipseToStimPlanCalculator::computeValues() { auto reservoirCellIndicesOpenForFlow = RimFractureContainmentTools::reservoirCellIndicesOpenForFlow( m_case, m_fracture ); auto resultValueAtIJ = []( const std::vector>& values, const RigFractureGrid& fractureGrid, size_t i, size_t j ) { if ( values.empty() ) return HUGE_VAL; size_t adjustedI = i + 1; size_t adjustedJ = j + 1; if ( adjustedI >= fractureGrid.iCellCount() + 1 || adjustedJ >= fractureGrid.jCellCount() + 1 ) return HUGE_VAL; return values[adjustedJ][adjustedI]; }; std::vector> injectivityFactors; std::vector> viscosities; std::vector> filterCakeMobilities; std::vector> filtrateThicknesses; RimThermalFractureTemplate* thermalFractureTemplate = dynamic_cast( m_fracture->fractureTemplate() ); if ( thermalFractureTemplate != nullptr ) { auto unitSystem = thermalFractureTemplate->fractureDefinition()->unitSystem(); size_t timeStep = thermalFractureTemplate->activeTimeStepIndex(); injectivityFactors = thermalFractureTemplate->resultValues( RiaDefines::injectivityFactorResultName(), RiaDefines::getExpectedThermalFractureUnit( RiaDefines::injectivityFactorResultName(), unitSystem ), timeStep ); viscosities = thermalFractureTemplate->resultValues( RiaDefines::viscosityResultName(), RiaDefines::getExpectedThermalFractureUnit( RiaDefines::viscosityResultName(), unitSystem ), timeStep ); filterCakeMobilities = thermalFractureTemplate->resultValues( RiaDefines::filterCakeMobilityResultName(), RiaDefines::getExpectedThermalFractureUnit( RiaDefines::filterCakeMobilityResultName(), unitSystem ), timeStep ); filtrateThicknesses = thermalFractureTemplate->resultValues( RiaDefines::filtrateThicknessResultName(), RiaDefines::getExpectedThermalFractureUnit( RiaDefines::filtrateThicknessResultName(), unitSystem ), timeStep ); } for ( size_t i = 0; i < m_fractureGrid.fractureCells().size(); i++ ) { const RigFractureCell& fractureCell = m_fractureGrid.fractureCells()[i]; if ( !fractureCell.hasNonZeroConductivity() ) continue; std::unique_ptr eclToFractureTransCalc; if ( thermalFractureTemplate != nullptr ) { size_t cellI = fractureCell.getI(); size_t cellJ = fractureCell.getJ(); double injectivityFactor = resultValueAtIJ( injectivityFactors, m_fractureGrid, cellI, cellJ ); double viscosity = resultValueAtIJ( viscosities, m_fractureGrid, cellI, cellJ ); double filterCakeMobility = resultValueAtIJ( filterCakeMobilities, m_fractureGrid, cellI, cellJ ); double filtrateThickness = resultValueAtIJ( filtrateThicknesses, m_fractureGrid, cellI, cellJ ); // Assumed value double relativePermeability = 1.0; auto filterPressureDropType = thermalFractureTemplate->filterCakePressureDropType(); eclToFractureTransCalc = std::make_unique( m_case, m_fractureTransform, m_fractureSkinFactor, m_cDarcy, fractureCell, m_fracture, filterPressureDropType, injectivityFactor, filterCakeMobility, filtrateThickness, viscosity, relativePermeability ); } else { eclToFractureTransCalc = std::make_unique( m_case, m_fractureTransform, m_fractureSkinFactor, m_cDarcy, fractureCell, m_fracture ); } eclToFractureTransCalc->computeValues( reservoirCellIndicesOpenForFlow ); const std::vector& fractureCellContributingEclipseCells = eclToFractureTransCalc->globalIndiciesToContributingEclipseCells(); if ( !fractureCellContributingEclipseCells.empty() ) { m_singleFractureCellCalculators.emplace( i, std::move( eclToFractureTransCalc ) ); } } } using CellIdxSpace = RigTransmissibilityCondenser::CellAddress; //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigEclipseToStimPlanCalculator::appendDataToTransmissibilityCondenser( bool useFiniteConductivityInFracture, RigTransmissibilityCondenser* condenser ) const { for ( const auto& eclToFractureTransCalc : m_singleFractureCellCalculators ) { const std::vector& fractureCellContributingEclipseCells = eclToFractureTransCalc.second->globalIndiciesToContributingEclipseCells(); const std::vector& fractureCellContributingEclipseCellTransmissibilities = eclToFractureTransCalc.second->contributingEclipseCellTransmissibilities(); size_t stimPlanCellIndex = eclToFractureTransCalc.first; for ( size_t i = 0; i < fractureCellContributingEclipseCells.size(); i++ ) { if ( useFiniteConductivityInFracture ) { condenser->addNeighborTransmissibility( { true, CellIdxSpace::ECLIPSE, fractureCellContributingEclipseCells[i] }, { false, CellIdxSpace::STIMPLAN, stimPlanCellIndex }, fractureCellContributingEclipseCellTransmissibilities[i] ); } else { condenser->addNeighborTransmissibility( { true, CellIdxSpace::ECLIPSE, fractureCellContributingEclipseCells[i] }, { true, CellIdxSpace::WELL, 1 }, fractureCellContributingEclipseCellTransmissibilities[i] ); } } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigEclipseToStimPlanCalculator::totalEclipseAreaOpenForFlow() const { double area = 0.0; for ( const auto& singleCellCalc : m_singleFractureCellCalculators ) { double cellArea = singleCellCalc.second->areaOpenForFlow(); area += cellArea; } return area; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigEclipseToStimPlanCalculator::areaWeightedMatrixPermeability() const { RiaWeightedMeanCalculator calc; for ( const auto& singleCellCalc : m_singleFractureCellCalculators ) { const std::vector& areas = singleCellCalc.second->contributingEclipseCellIntersectionAreas(); const std::vector& permeabilities = singleCellCalc.second->contributingEclipseCellPermeabilities(); if ( areas.size() == permeabilities.size() ) { for ( size_t i = 0; i < areas.size(); i++ ) { calc.addValueAndWeight( permeabilities[i], areas[i] ); } } } return calc.validAggregatedWeight() ? calc.weightedMean() : 0.0; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigEclipseToStimPlanCalculator::areaWeightedWidth() const { double width = 0.0; auto ellipseFractureTemplate = dynamic_cast( m_fracture->fractureTemplate() ); if ( ellipseFractureTemplate ) { width = ellipseFractureTemplate->width(); } auto stimPlanFractureTemplate = dynamic_cast( m_fracture->fractureTemplate() ); if ( stimPlanFractureTemplate ) { auto widthValues = stimPlanFractureTemplate->widthResultValues(); if ( !widthValues.empty() ) { RiaWeightedMeanCalculator calc; for ( const auto& singleCellCalc : m_singleFractureCellCalculators ) { double cellArea = singleCellCalc.second->areaOpenForFlow(); size_t globalStimPlanCellIndex = singleCellCalc.first; double widthValue = widthValues[globalStimPlanCellIndex]; if ( !std::isinf( widthValue ) && !std::isnan( widthValue ) ) { calc.addValueAndWeight( widthValue, cellArea ); } } width = calc.weightedMean(); } else { width = stimPlanFractureTemplate->computeFractureWidth( m_fracture ); } } return width; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigEclipseToStimPlanCalculator::areaWeightedConductivity() const { RiaWeightedMeanCalculator calc; for ( const auto& singleCellCalc : m_singleFractureCellCalculators ) { double cellArea = singleCellCalc.second->areaOpenForFlow(); double conductivity = singleCellCalc.second->fractureCell().getConductivityValue(); if ( !std::isinf( conductivity ) && !std::isnan( conductivity ) ) { calc.addValueAndWeight( conductivity, cellArea ); } } return calc.validAggregatedWeight() ? calc.weightedMean() : 0.0; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigEclipseToStimPlanCalculator::longestYSectionOpenForFlow() const { // For each I, find the longest aggregated distance along J with continuous fracture cells with conductivity above // zero connected to Eclipse cells open for flow double longestRange = 0.0; for ( size_t i = 0; i < m_fractureGrid.iCellCount(); i++ ) { double currentAggregatedDistanceY = 0.0; for ( size_t j = 0; j < m_fractureGrid.jCellCount(); j++ ) { size_t globalStimPlanCellIndex = m_fractureGrid.getGlobalIndexFromIJ( i, j ); auto calculatorForCell = m_singleFractureCellCalculators.find( globalStimPlanCellIndex ); if ( calculatorForCell != m_singleFractureCellCalculators.end() ) { currentAggregatedDistanceY += calculatorForCell->second->fractureCell().cellSizeZ(); } else { longestRange = std::max( longestRange, currentAggregatedDistanceY ); currentAggregatedDistanceY = 0.0; } } longestRange = std::max( longestRange, currentAggregatedDistanceY ); } return longestRange; }