///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFishbonesGeometry.h" #include "RimFishbones.h" #include "RigWellPath.h" #include "RimWellPath.h" #include "cvfAssert.h" #include "cvfMatrix4.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFisbonesGeometry::RigFisbonesGeometry( RimFishbones* fishbonesSub ) : m_fishbonesSub( fishbonesSub ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RigFisbonesGeometry::coordsForLateral( size_t subIndex, size_t lateralIndex ) const { CVF_ASSERT( lateralIndex < m_fishbonesSub->lateralLengths().size() ); const auto& subAndLateralIndices = m_fishbonesSub->installedLateralIndices(); bool found = std::find( subAndLateralIndices.begin(), subAndLateralIndices.end(), std::make_pair( subIndex, lateralIndex ) ) != subAndLateralIndices.end(); CVF_ASSERT( found ); cvf::Vec3d position; cvf::Vec3d lateralInitialDirection; cvf::Mat4d buildAngleRotationMatrix; computeLateralPositionAndOrientation( subIndex, lateralIndex, &position, &lateralInitialDirection, &buildAngleRotationMatrix ); return computeCoordsAlongLateral( m_fishbonesSub->measuredDepth( subIndex ), m_fishbonesSub->lateralLengths()[lateralIndex], position, lateralInitialDirection, buildAngleRotationMatrix ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFisbonesGeometry::computeLateralPositionAndOrientation( size_t subIndex, size_t lateralIndex, cvf::Vec3d* startCoord, cvf::Vec3d* startDirection, cvf::Mat4d* buildAngleMatrix ) const { RimWellPath* wellPath = nullptr; m_fishbonesSub->firstAncestorOrThisOfTypeAsserted( wellPath ); auto wellPathGeometry = wellPath->wellPathGeometry(); if ( !wellPathGeometry ) return; double measuredDepth = m_fishbonesSub->measuredDepth( subIndex ); cvf::Vec3d position = wellPathGeometry->interpolatedPointAlongWellPath( measuredDepth ); cvf::Mat4d buildAngleMat; cvf::Vec3d lateralDirection; { cvf::Vec3d lateralInitialDirection = cvf::Vec3d::Z_AXIS; cvf::Vec3d p1 = cvf::Vec3d::UNDEFINED; cvf::Vec3d p2 = cvf::Vec3d::UNDEFINED; wellPathGeometry->twoClosestPoints( position, &p1, &p2 ); CVF_ASSERT( !p1.isUndefined() && !p2.isUndefined() ); cvf::Vec3d alongWellPath = ( p2 - p1 ).getNormalized(); if ( RigFisbonesGeometry::closestMainAxis( alongWellPath ) == cvf::Vec3d::Z_AXIS ) { // Use Y-AXIS if well path is heading close to Z-AXIS lateralInitialDirection = cvf::Vec3d::Y_AXIS; } { double initialRotationAngle = m_fishbonesSub->rotationAngle( subIndex ); double lateralOffsetDegrees = 360.0 / m_fishbonesSub->lateralLengths().size(); double lateralOffsetRadians = cvf::Math::toRadians( initialRotationAngle + lateralOffsetDegrees * lateralIndex ); cvf::Mat4d lateralOffsetMatrix = cvf::Mat4d::fromRotation( alongWellPath, lateralOffsetRadians ); lateralInitialDirection = lateralInitialDirection.getTransformedVector( lateralOffsetMatrix ); } cvf::Vec3d rotationAxis; rotationAxis.cross( alongWellPath, lateralInitialDirection ); double exitAngleRadians = cvf::Math::toRadians( m_fishbonesSub->exitAngle() ); cvf::Mat4d lateralRotationMatrix = cvf::Mat4d::fromRotation( rotationAxis, exitAngleRadians ); lateralDirection = alongWellPath.getTransformedVector( lateralRotationMatrix ); double buildAngleRadians = cvf::Math::toRadians( m_fishbonesSub->buildAngle() ); buildAngleMat = cvf::Mat4d::fromRotation( rotationAxis, buildAngleRadians ); } *startCoord = position; *startDirection = lateralDirection; *buildAngleMatrix = buildAngleMat; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RigFisbonesGeometry::computeCoordsAlongLateral( double startMeasuredDepth, double lateralLength, const cvf::Vec3d& startCoord, const cvf::Vec3d& startDirection, const cvf::Mat4d& buildAngleMatrix ) { std::vector> coords; cvf::Vec3d lateralDirection( startDirection ); // Compute coordinates along the lateral by modifying the lateral direction by the build angle for // every unit vector along the lateral cvf::Vec3d accumulatedPosition = startCoord; double measuredDepth = startMeasuredDepth; double accumulatedLength = 0.0; while ( accumulatedLength < lateralLength ) { coords.push_back( std::make_pair( accumulatedPosition, measuredDepth ) ); double delta = 1.0; if ( lateralLength - accumulatedLength < 1.0 ) { delta = lateralLength - accumulatedLength; } accumulatedPosition += delta * lateralDirection; // Modify the lateral direction by the build angle for each unit vector lateralDirection = lateralDirection.getTransformedVector( buildAngleMatrix ); accumulatedLength += delta; measuredDepth += delta; } coords.push_back( std::make_pair( accumulatedPosition, measuredDepth ) ); return coords; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3d RigFisbonesGeometry::closestMainAxis( const cvf::Vec3d& vec ) { size_t maxComponent = 0; double maxValue = cvf::Math::abs( vec.x() ); if ( cvf::Math::abs( vec.y() ) > maxValue ) { maxComponent = 1; maxValue = cvf::Math::abs( vec.y() ); } if ( cvf::Math::abs( vec.z() ) > maxValue ) { maxComponent = 2; } if ( maxComponent == 0 ) { return cvf::Vec3d::X_AXIS; } else if ( maxComponent == 1 ) { return cvf::Vec3d::Y_AXIS; } else { return cvf::Vec3d::Z_AXIS; } }