///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2020- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RimFractureModelElasticPropertyCalculator.h" #include "RiaDefines.h" #include "RiaFractureModelDefines.h" #include "RiaInterpolationTools.h" #include "RiaLogging.h" #include "RigEclipseCaseData.h" #include "RigEclipseWellLogExtractor.h" #include "RigElasticProperties.h" #include "RigResultAccessor.h" #include "RigResultAccessorFactory.h" #include "RigWellLogCurveData.h" #include "RigWellPath.h" #include "RimCase.h" #include "RimColorLegend.h" #include "RimColorLegendItem.h" #include "RimEclipseCase.h" #include "RimEclipseInputProperty.h" #include "RimEclipseInputPropertyCollection.h" #include "RimEclipseResultDefinition.h" #include "RimElasticProperties.h" #include "RimFaciesProperties.h" #include "RimFractureModel.h" #include "RimFractureModelCalculator.h" #include "RimFractureModelElasticPropertyCalculator.h" #include "RimFractureModelPlot.h" #include "RimFractureModelTemplate.h" #include "RimLayerCurve.h" #include "RimModeledWellPath.h" #include "RimNonNetLayers.h" #include "RimTools.h" #include "RimWellLogFile.h" #include "RimWellLogPlot.h" #include "RimWellLogTrack.h" #include "RimWellPath.h" #include "RimWellPathCollection.h" #include "RimWellPlotTools.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureModelElasticPropertyCalculator::RimFractureModelElasticPropertyCalculator( RimFractureModelCalculator* fractureModelCalculator ) : m_fractureModelCalculator( fractureModelCalculator ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureModelElasticPropertyCalculator::isMatching( RiaDefines::CurveProperty curveProperty ) const { std::vector matching = {RiaDefines::CurveProperty::YOUNGS_MODULUS, RiaDefines::CurveProperty::POISSONS_RATIO, RiaDefines::CurveProperty::BIOT_COEFFICIENT, RiaDefines::CurveProperty::K0, RiaDefines::CurveProperty::K_IC, RiaDefines::CurveProperty::PROPPANT_EMBEDMENT, RiaDefines::CurveProperty::FLUID_LOSS_COEFFICIENT, RiaDefines::CurveProperty::SPURT_LOSS, RiaDefines::CurveProperty::RELATIVE_PERMEABILITY_FACTOR, RiaDefines::CurveProperty::PORO_ELASTIC_CONSTANT, RiaDefines::CurveProperty::THERMAL_EXPANSION_COEFFICIENT, RiaDefines::CurveProperty::IMMOBILE_FLUID_SATURATION}; return std::find( matching.begin(), matching.end(), curveProperty ) != matching.end(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureModelElasticPropertyCalculator::calculate( RiaDefines::CurveProperty curveProperty, const RimFractureModel* fractureModel, int timeStep, std::vector& values, std::vector& measuredDepthValues, std::vector& tvDepthValues, double& rkbDiff ) const { RimEclipseCase* eclipseCase = fractureModel->eclipseCase(); if ( !eclipseCase ) { return false; } if ( !fractureModel->thicknessDirectionWellPath() ) { return false; } RigWellPath* wellPathGeometry = fractureModel->thicknessDirectionWellPath()->wellPathGeometry(); if ( !wellPathGeometry ) { RiaLogging::error( "No well path geometry found for layer data exctration." ); return false; } RigEclipseWellLogExtractor eclExtractor( eclipseCase->eclipseCaseData(), wellPathGeometry, "fracture model" ); measuredDepthValues = eclExtractor.cellIntersectionMDs(); tvDepthValues = eclExtractor.cellIntersectionTVDs(); rkbDiff = eclExtractor.wellPathGeometry()->rkbDiff(); // Extract formation data cvf::ref formationResultAccessor = RigResultAccessorFactory::createFromResultAddress( eclipseCase->eclipseCaseData(), 0, RiaDefines::PorosityModelType::MATRIX_MODEL, 0, RigEclipseResultAddress( RiaDefines::ResultCatType::FORMATION_NAMES, RiaDefines::activeFormationNamesResultName() ) ); if ( !formationResultAccessor.notNull() ) { RiaLogging::error( QString( "No formation result found." ) ); return false; } CurveSamplingPointData curveData = RimWellLogTrack::curveSamplingPointData( &eclExtractor, formationResultAccessor.p() ); std::vector formationValues = curveData.data; std::vector formationNamesVector = RimWellLogTrack::formationNamesVector( eclipseCase ); RimFractureModelTemplate* fractureModelTemplate = fractureModel->fractureModelTemplate(); if ( !fractureModelTemplate ) { RiaLogging::error( QString( "No fracture model template found" ) ); return false; } RimFaciesProperties* faciesProperties = fractureModelTemplate->faciesProperties(); if ( !faciesProperties ) { RiaLogging::error( QString( "No facies properties found when extracting elastic properties." ) ); return false; } RimColorLegend* colorLegend = faciesProperties->colorLegend(); if ( !colorLegend ) { RiaLogging::error( QString( "No color legend found when extracting elastic properties." ) ); return false; } RimElasticProperties* elasticProperties = fractureModelTemplate->elasticProperties(); if ( !elasticProperties ) { RiaLogging::error( QString( "No elastic properties found" ) ); return false; } std::vector faciesValues = m_fractureModelCalculator->extractValues( RiaDefines::CurveProperty::FACIES, timeStep ); if ( faciesValues.empty() ) { RiaLogging::error( QString( "No facies values found." ) ); return false; } std::vector poroValues = m_fractureModelCalculator->extractValues( RiaDefines::CurveProperty::POROSITY, timeStep ); double overburdenHeight = fractureModel->overburdenHeight(); if ( overburdenHeight > 0.0 ) { QString overburdenFormation = fractureModel->overburdenFormation(); addOverburden( formationNamesVector, formationValues, tvDepthValues, measuredDepthValues, overburdenHeight, overburdenFormation ); } double underburdenHeight = fractureModel->underburdenHeight(); if ( underburdenHeight > 0.0 ) { QString underburdenFormation = fractureModel->underburdenFormation(); addUnderburden( formationNamesVector, formationValues, tvDepthValues, measuredDepthValues, underburdenHeight, underburdenFormation ); } std::vector netToGrossValues = m_fractureModelCalculator->extractValues( RiaDefines::CurveProperty::NET_TO_GROSS, timeStep ); CAF_ASSERT( tvDepthValues.size() == faciesValues.size() ); CAF_ASSERT( tvDepthValues.size() == poroValues.size() ); CAF_ASSERT( tvDepthValues.size() == formationValues.size() ); bool isScaledByNetToGross = false; double netToGrossCutoff = 1.0; QString netToGrossFaciesName = ""; QString netToGrossFormationName = ""; if ( fractureModel->fractureModelTemplate() && fractureModel->fractureModelTemplate()->nonNetLayers() ) { isScaledByNetToGross = fractureModel->isScaledByNetToGross( curveProperty ) && !netToGrossValues.empty() && fractureModel->fractureModelTemplate()->nonNetLayers()->isChecked(); netToGrossCutoff = fractureModel->fractureModelTemplate()->nonNetLayers()->cutOff(); netToGrossFaciesName = fractureModel->fractureModelTemplate()->nonNetLayers()->facies(); } for ( size_t i = 0; i < tvDepthValues.size(); i++ ) { // Avoid using the field name in the match for now QString fieldName = ""; QString faciesName = findFaciesName( *colorLegend, faciesValues[i] ); int idx = static_cast( formationValues[i] ); QString formationName = formationNamesVector[idx]; double porosity = poroValues[i]; FaciesKey faciesKey = std::make_tuple( fieldName, formationName, faciesName ); if ( elasticProperties->hasPropertiesForFacies( faciesKey ) ) { if ( RimElasticProperties::isScalableProperty( curveProperty ) ) { const RigElasticProperties& rigElasticProperties = elasticProperties->propertiesForFacies( faciesKey ); double scale = elasticProperties->getPropertyScaling( formationName, faciesName, curveProperty ); double val = rigElasticProperties.getValueForPorosity( curveProperty, porosity, scale ); // if ( isScaledByNetToGross ) { double netToGross = netToGrossValues[i]; if ( netToGross < netToGrossCutoff ) { FaciesKey ntgFaciesKey = std::make_tuple( "", formationName, netToGrossFaciesName ); const RigElasticProperties& rigNtgElasticProperties = elasticProperties->propertiesForFacies( ntgFaciesKey ); double ntgScale = elasticProperties->getPropertyScaling( formationName, netToGrossFaciesName, curveProperty ); double ntgValue = rigNtgElasticProperties.getValueForPorosity( curveProperty, porosity, ntgScale ); val = val * netToGross + ( 1.0 - netToGross ) * ntgValue; } } values.push_back( val ); } else if ( fractureModel->hasDefaultValueForProperty( curveProperty ) ) { double val = fractureModel->getDefaultValueForProperty( curveProperty ); values.push_back( val ); } } else { RiaLogging::error( QString( "Missing elastic properties. Field='%1', formation='%2', facies='%3'" ) .arg( fieldName ) .arg( formationName ) .arg( faciesName ) ); return false; } } return true; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureModelElasticPropertyCalculator::findFaciesName( const RimColorLegend& colorLegend, double value ) { for ( auto item : colorLegend.colorLegendItems() ) { if ( item->categoryValue() == static_cast( value ) ) return item->categoryName(); } return "not found"; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureModelElasticPropertyCalculator::addOverburden( std::vector& formationNames, std::vector& formationValues, std::vector& tvDepthValues, std::vector& measuredDepthValues, double overburdenHeight, const QString& formationName ) { if ( !tvDepthValues.empty() ) { // Prepend the new "fake" depth for start of overburden double tvdTop = tvDepthValues[0]; tvDepthValues.insert( tvDepthValues.begin(), tvdTop ); tvDepthValues.insert( tvDepthValues.begin(), tvdTop - overburdenHeight ); // TODO: this is not always correct double mdTop = measuredDepthValues[0]; measuredDepthValues.insert( measuredDepthValues.begin(), mdTop ); measuredDepthValues.insert( measuredDepthValues.begin(), mdTop - overburdenHeight ); formationNames.push_back( formationName ); formationValues.insert( formationValues.begin(), formationNames.size() - 1 ); formationValues.insert( formationValues.begin(), formationNames.size() - 1 ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureModelElasticPropertyCalculator::addUnderburden( std::vector& formationNames, std::vector& formationValues, std::vector& tvDepthValues, std::vector& measuredDepthValues, double underburdenHeight, const QString& formationName ) { if ( !tvDepthValues.empty() ) { size_t lastIndex = tvDepthValues.size() - 1; double tvdBottom = tvDepthValues[lastIndex]; tvDepthValues.push_back( tvdBottom ); tvDepthValues.push_back( tvdBottom + underburdenHeight ); // TODO: this is not always correct double mdBottom = measuredDepthValues[lastIndex]; measuredDepthValues.push_back( mdBottom ); measuredDepthValues.push_back( mdBottom + underburdenHeight ); formationNames.push_back( formationName ); formationValues.push_back( formationNames.size() - 1 ); formationValues.push_back( formationNames.size() - 1 ); } }