///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017- Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigTransmissibilityEquations.h" #include #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::wellBoreTransmissibilityComponent(double cellPerforationVectorComponent, double permeabilityNormalDirection1, double permeabilityNormalDirection2, double cellSizeNormalDirection1, double cellSizeNormalDirection2, double wellRadius, double skinFactor, double cDarcyForRelevantUnit) { double K = cvf::Math::sqrt(permeabilityNormalDirection1 * permeabilityNormalDirection2); double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent; double peaceManRad = peacemanRadius( permeabilityNormalDirection1, permeabilityNormalDirection2, cellSizeNormalDirection1, cellSizeNormalDirection2); double denominator = log(peaceManRad / wellRadius) + skinFactor; double trans = nominator / denominator; return trans; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::totalConnectionFactor(double transX, double transY, double transZ) { return cvf::Math::sqrt(pow(transX, 2.0) + pow(transY, 2.0) + pow(transZ, 2.0)); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::totalKh(double cellPermX, double cellPermY, double cellPermZ, const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg) { // Compute kh for each local grid cell axis // Use permeability values for the two other axis double khx = sqrt(cellPermY * cellPermZ) * internalCellLengths.x() * lateralNtg; double khy = sqrt(cellPermX * cellPermZ) * internalCellLengths.y() * lateralNtg; double khz = sqrt(cellPermX * cellPermY) * internalCellLengths.z() * ntg; const double totKh = cvf::Math::sqrt(khx * khx + khy * khy + khz * khz); return totKh; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::effectiveK(double cellPermX, double cellPermY, double cellPermZ, const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg) { // Compute kh for each local grid cell axis // Use permeability values for the two other axis double lx = internalCellLengths.x() * lateralNtg; double ly = internalCellLengths.y() * lateralNtg; double lz = internalCellLengths.z() * ntg; double khx = sqrt(cellPermY * cellPermZ) * lx; double khy = sqrt(cellPermX * cellPermZ) * ly; double khz = sqrt(cellPermX * cellPermY) * lz; double nominator = khx + khy + khz; double denominator = lx + ly + lz; const double effK = nominator / denominator; return effK; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::effectiveH(const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg) { double lx = internalCellLengths.x() * lateralNtg; double ly = internalCellLengths.y() * lateralNtg; double lz = internalCellLengths.z() * ntg; double effH = cvf::Math::sqrt(lx*lx + ly*ly + lz*lz); return effH; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::permeability(const double conductivity, const double width) { double threshold = 1e-7; if (std::fabs(width) > threshold) { double perm = conductivity / width; return perm; } else { return 0.0; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::peacemanRadius(double permeabilityNormalDirection1, double permeabilityNormalDirection2, double cellSizeNormalDirection1, double cellSizeNormalDirection2) { double numerator = cvf::Math::sqrt( pow(cellSizeNormalDirection2, 2.0) * pow(permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5) + pow(cellSizeNormalDirection1, 2.0) * pow(permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5)); double denominator = pow((permeabilityNormalDirection1 / permeabilityNormalDirection2), 0.25) + pow((permeabilityNormalDirection2 / permeabilityNormalDirection1), 0.25); double r0 = 0.28 * numerator / denominator; return r0; }