///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigEclipseToStimPlanCellTransmissibilityCalculator.h" #include "RigActiveCellInfo.h" #include "RigCellGeometryTools.h" #include "RigEclipseCaseData.h" #include "RigFractureCell.h" #include "RigFractureTransmissibilityEquations.h" #include "RigMainGrid.h" #include "RigResultAccessorFactory.h" #include "RigHexIntersectionTools.h" #include "RimEclipseCase.h" #include "RimReservoirCellResultsStorage.h" #include "cvfGeometryTools.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(RimEclipseCase* caseToApply, cvf::Mat4d fractureTransform, double skinFactor, double cDarcy, const RigFractureCell& stimPlanCell) : m_case(caseToApply), m_fractureTransform(fractureTransform), m_fractureSkinFactor(skinFactor), m_cDarcy(cDarcy), m_stimPlanCell(stimPlanCell) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndeciesToContributingEclipseCells() { if (m_globalIndeciesToContributingEclipseCells.size() < 1) { calculateStimPlanCellsMatrixTransmissibility(); } return m_globalIndeciesToContributingEclipseCells; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities() { if (m_globalIndeciesToContributingEclipseCells.size() < 1) { calculateStimPlanCellsMatrixTransmissibility(); } return m_contributingEclipseCellTransmissibilities; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility() { // Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture): if (m_stimPlanCell.getConductivtyValue() < 1e-7) return; const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData(); RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL; cvf::ref dataAccessObjectDx = loadResultAndCreateResultAccessor(m_case, porosityModel, "DX"); cvf::ref dataAccessObjectDy = loadResultAndCreateResultAccessor(m_case, porosityModel, "DY"); cvf::ref dataAccessObjectDz = loadResultAndCreateResultAccessor(m_case, porosityModel, "DZ"); cvf::ref dataAccessObjectPermX = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMX"); cvf::ref dataAccessObjectPermY = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMY"); cvf::ref dataAccessObjectPermZ = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMZ"); cvf::ref dataAccessObjectNTG = loadResultAndCreateResultAccessor(m_case, porosityModel, "NTG"); const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel); std::vector stimPlanPolygonTransformed; for (cvf::Vec3d v : m_stimPlanCell.getPolygon()) { v.transformPoint(m_fractureTransform); stimPlanPolygonTransformed.push_back(v); } std::vector fracCells = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed); for (size_t fracCell : fracCells) { bool cellIsActive = activeCellInfo->isActive(fracCell); if (!cellIsActive) continue; double permX = dataAccessObjectPermX->cellScalarGlobIdx(fracCell); double permY = dataAccessObjectPermY->cellScalarGlobIdx(fracCell); double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(fracCell); double dx = dataAccessObjectDx->cellScalarGlobIdx(fracCell); double dy = dataAccessObjectDy->cellScalarGlobIdx(fracCell); double dz = dataAccessObjectDz->cellScalarGlobIdx(fracCell); double NTG = 1.0; if (dataAccessObjectNTG.notNull()) { NTG = dataAccessObjectNTG->cellScalarGlobIdx(fracCell); } const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid(); std::array hexCorners; mainGrid->cellCornerVertices(fracCell, hexCorners.data()); std::vector > planeCellPolygons; bool isPlanIntersected = RigHexIntersectionTools::planeHexIntersectionPolygons(hexCorners, m_fractureTransform, planeCellPolygons); if (!isPlanIntersected || planeCellPolygons.size() == 0) continue; cvf::Vec3d localX; cvf::Vec3d localY; cvf::Vec3d localZ; RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ); //Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located) cvf::Mat4d invertedTransMatrix = m_fractureTransform.getInverted(); for (std::vector & planeCellPolygon : planeCellPolygons) { for (cvf::Vec3d& v : planeCellPolygon) { v.transformPoint(invertedTransMatrix); } } cvf::Vec3d localZinFracPlane; localZinFracPlane = localZ; localZinFracPlane.transformVector(invertedTransMatrix); cvf::Vec3d directionOfLength = cvf::Vec3d::ZERO; directionOfLength.cross(localZinFracPlane, cvf::Vec3d(0, 0, 1)); directionOfLength.normalize(); //Fracture plane is XY - so localZinFracPlane is in this plane. //Crossing this vector with a vector normal to this plane (0,0,1) gives a vector for in the ij-direction in the frac plane //This is the direction in which we calculate the length of the fracture element in the cell, //to use in the skinfactor contribution (S*l/pi) to the transmissibility. std::vector > polygonsForStimPlanCellInEclipseCell; cvf::Vec3d areaVector; std::vector stimPlanPolygon = m_stimPlanCell.getPolygon(); for (std::vector planeCellPolygon : planeCellPolygons) { std::vector >clippedPolygons = RigCellGeometryTools::intersectPolygons(planeCellPolygon, stimPlanPolygon); for (std::vector clippedPolygon : clippedPolygons) { polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon); } } if (polygonsForStimPlanCellInEclipseCell.size() == 0) continue; double area; std::vector areaOfFractureParts; double length; std::vector lengthXareaOfFractureParts; double Ax = 0.0, Ay = 0.0, Az = 0.0; for (std::vector fracturePartPolygon : polygonsForStimPlanCellInEclipseCell) { areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon); area = areaVector.length(); areaOfFractureParts.push_back(area); //TODO: should the l in the sl/pi term in the denominator of the Tmj expression be the length of the full Eclipse cell or fracture? length = RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, fracturePartPolygon); lengthXareaOfFractureParts.push_back(length * area); cvf::Plane fracturePlane; bool isCellIntersected = false; fracturePlane.setFromPointAndNormal(static_cast(m_fractureTransform.translation()), static_cast(m_fractureTransform.col(2))); Ax += abs(area*(fracturePlane.normal().dot(localY))); Ay += abs(area*(fracturePlane.normal().dot(localX))); Az += abs(area*(fracturePlane.normal().dot(localZ))); } double fractureArea = 0.0; for (double area : areaOfFractureParts) fractureArea += area; double totalAreaXLength = 0.0; for (double lengtXarea : lengthXareaOfFractureParts) totalAreaXLength += lengtXarea; double fractureAreaWeightedlength = totalAreaXLength / fractureArea; double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy); double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy); double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy); double transmissibility = sqrt(transmissibility_X * transmissibility_X + transmissibility_Y * transmissibility_Y + transmissibility_Z * transmissibility_Z); m_globalIndeciesToContributingEclipseCells.push_back(fracCell); m_contributingEclipseCellTransmissibilities.push_back(transmissibility); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(std::vector polygon) { std::vector cellIndices; const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid(); if (!mainGrid) return cellIndices; cvf::BoundingBox polygonBBox; for (cvf::Vec3d nodeCoord : polygon) polygonBBox.add(nodeCoord); mainGrid->findIntersectingCells(polygonBBox, &cellIndices); return cellIndices; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::ref RigEclipseToStimPlanCellTransmissibilityCalculator::loadResultAndCreateResultAccessor( RimEclipseCase* eclipseCase, RiaDefines::PorosityModelType porosityModel, const QString& uiResultName) { CVF_ASSERT(eclipseCase); RimReservoirCellResultsStorage* gridCellResults = eclipseCase->results(porosityModel); // Calling this function will force loading of result from file gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, uiResultName); const RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData(); // Create result accessor object for main grid at time step zero (static result date is always at first time step return RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, uiResultName); }