///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2020- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RimStimPlanModelElasticPropertyCalculator.h" #include "RiaDefines.h" #include "RiaInterpolationTools.h" #include "RiaLogging.h" #include "RiaStimPlanModelDefines.h" #include "RigEclipseCaseData.h" #include "RigEclipseResultAddress.h" #include "RigElasticProperties.h" #include "RigResultAccessor.h" #include "RigResultAccessorFactory.h" #include "Well/RigEclipseWellLogExtractor.h" #include "Well/RigWellLogCurveData.h" #include "Well/RigWellPath.h" #include "RimCase.h" #include "RimColorLegend.h" #include "RimColorLegendItem.h" #include "RimEclipseCase.h" #include "RimEclipseInputProperty.h" #include "RimEclipseInputPropertyCollection.h" #include "RimEclipseResultDefinition.h" #include "RimElasticProperties.h" #include "RimFaciesProperties.h" #include "RimModeledWellPath.h" #include "RimNonNetLayers.h" #include "RimStimPlanModel.h" #include "RimStimPlanModelCalculator.h" #include "RimStimPlanModelElasticPropertyCalculator.h" #include "RimStimPlanModelTemplate.h" #include "RimTools.h" #include "RimWellLogLasFile.h" #include "RimWellLogPlot.h" #include "RimWellLogTrack.h" #include "RimWellPath.h" #include "RimWellPathCollection.h" #include "RimWellPlotTools.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimStimPlanModelElasticPropertyCalculator::RimStimPlanModelElasticPropertyCalculator( RimStimPlanModelCalculator* stimPlanModelCalculator ) : m_stimPlanModelCalculator( stimPlanModelCalculator ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimStimPlanModelElasticPropertyCalculator::isMatching( RiaDefines::CurveProperty curveProperty ) const { std::vector matching = { RiaDefines::CurveProperty::YOUNGS_MODULUS, RiaDefines::CurveProperty::POISSONS_RATIO, RiaDefines::CurveProperty::BIOT_COEFFICIENT, RiaDefines::CurveProperty::K0, RiaDefines::CurveProperty::K_IC, RiaDefines::CurveProperty::PROPPANT_EMBEDMENT, RiaDefines::CurveProperty::FLUID_LOSS_COEFFICIENT, RiaDefines::CurveProperty::SPURT_LOSS, RiaDefines::CurveProperty::RELATIVE_PERMEABILITY_FACTOR, RiaDefines::CurveProperty::PORO_ELASTIC_CONSTANT, RiaDefines::CurveProperty::THERMAL_EXPANSION_COEFFICIENT, RiaDefines::CurveProperty::IMMOBILE_FLUID_SATURATION }; return std::find( matching.begin(), matching.end(), curveProperty ) != matching.end(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimStimPlanModelElasticPropertyCalculator::calculate( RiaDefines::CurveProperty curveProperty, const RimStimPlanModel* stimPlanModel, int timeStep, std::vector& values, std::vector& measuredDepthValues, std::vector& tvDepthValues, double& rkbDiff ) const { // Use the static model for extracting elastic properties RimEclipseCase* eclipseCase = stimPlanModel->eclipseCaseForProperty( RiaDefines::CurveProperty::FACIES ); if ( !eclipseCase ) { return false; } if ( !stimPlanModel->thicknessDirectionWellPath() ) { return false; } RigWellPath* wellPathGeometry = stimPlanModel->thicknessDirectionWellPath()->wellPathGeometry(); if ( !wellPathGeometry ) { RiaLogging::error( "No well path geometry found for layer data exctration." ); return false; } auto eclipseCaseData = eclipseCase->eclipseCaseData(); if ( !eclipseCaseData ) { return false; } RigEclipseWellLogExtractor eclExtractor( eclipseCase->eclipseCaseData(), wellPathGeometry, "fracture model" ); measuredDepthValues = eclExtractor.cellIntersectionMDs(); tvDepthValues = eclExtractor.cellIntersectionTVDs(); rkbDiff = eclExtractor.wellPathGeometry()->rkbDiff(); // Extract formation data cvf::ref formationResultAccessor = RigResultAccessorFactory::createFromResultAddress( eclipseCase->eclipseCaseData(), 0, RiaDefines::PorosityModelType::MATRIX_MODEL, 0, RigEclipseResultAddress( RiaDefines::ResultCatType::FORMATION_NAMES, RiaResultNames::activeFormationNamesResultName() ) ); if ( !formationResultAccessor.notNull() ) { RiaLogging::error( QString( "No formation result found." ) ); return false; } CurveSamplingPointData curveData = RimWellLogTrack::curveSamplingPointData( &eclExtractor, formationResultAccessor.p() ); std::vector formationValues = curveData.data; std::vector formationNamesVector = RimWellLogTrack::formationNamesVector( eclipseCase ); RimStimPlanModelTemplate* stimPlanModelTemplate = stimPlanModel->stimPlanModelTemplate(); if ( !stimPlanModelTemplate ) { RiaLogging::error( QString( "No fracture model template found" ) ); return false; } RimFaciesProperties* faciesProperties = stimPlanModelTemplate->faciesProperties(); if ( !faciesProperties ) { RiaLogging::error( QString( "No facies properties found when extracting elastic properties." ) ); return false; } QString defaultFacies = stimPlanModelTemplate->defaultFacies(); if ( defaultFacies.isEmpty() ) { RiaLogging::error( QString( "No default facies defined when extracting elastic properties." ) ); return false; } RimColorLegend* colorLegend = faciesProperties->colorLegend(); if ( !colorLegend ) { RiaLogging::error( QString( "No color legend found when extracting elastic properties." ) ); return false; } RimElasticProperties* elasticProperties = stimPlanModelTemplate->elasticProperties(); if ( !elasticProperties ) { RiaLogging::error( QString( "No elastic properties found when extracting elastic properties." ) ); return false; } std::vector faciesValues = m_stimPlanModelCalculator->extractValues( RiaDefines::CurveProperty::FACIES, timeStep ); if ( faciesValues.empty() ) { RiaLogging::error( QString( "No facies values found when extracting elastic properties." ) ); return false; } std::vector poroValues = m_stimPlanModelCalculator->extractValues( RiaDefines::CurveProperty::POROSITY_UNSCALED, timeStep ); if ( poroValues.empty() ) { RiaLogging::error( QString( "No porosity values found when extracting elastic properties." ) ); return false; } double overburdenHeight = stimPlanModel->overburdenHeight(); if ( overburdenHeight > 0.0 ) { QString overburdenFormation = stimPlanModel->overburdenFormation(); addOverburden( formationNamesVector, formationValues, tvDepthValues, measuredDepthValues, overburdenHeight, overburdenFormation ); } double underburdenHeight = stimPlanModel->underburdenHeight(); if ( underburdenHeight > 0.0 ) { QString underburdenFormation = stimPlanModel->underburdenFormation(); addUnderburden( formationNamesVector, formationValues, tvDepthValues, measuredDepthValues, underburdenHeight, underburdenFormation ); } std::vector netToGrossValues = m_stimPlanModelCalculator->extractValues( RiaDefines::CurveProperty::NET_TO_GROSS, timeStep ); CAF_ASSERT( tvDepthValues.size() == faciesValues.size() ); CAF_ASSERT( tvDepthValues.size() == poroValues.size() ); CAF_ASSERT( tvDepthValues.size() == formationValues.size() ); bool isScaledByNetToGross = false; double netToGrossCutoff = 1.0; QString netToGrossFaciesName = ""; if ( stimPlanModel->stimPlanModelTemplate() && stimPlanModel->stimPlanModelTemplate()->nonNetLayers() ) { isScaledByNetToGross = stimPlanModel->isScaledByNetToGross( curveProperty ) && !netToGrossValues.empty() && stimPlanModel->stimPlanModelTemplate()->nonNetLayers()->isChecked(); netToGrossCutoff = stimPlanModel->stimPlanModelTemplate()->nonNetLayers()->cutOff(); netToGrossFaciesName = stimPlanModel->stimPlanModelTemplate()->nonNetLayers()->facies(); } for ( size_t i = 0; i < tvDepthValues.size(); i++ ) { // Avoid using the field name in the match for now QString fieldName = ""; auto [foundFaciesName, faciesName] = findFaciesName( *colorLegend, faciesValues[i], stimPlanModel->stimPlanModelTemplate()->defaultFacies() ); if ( !foundFaciesName ) { RiaLogging::error( QString( "Missing facies name for facies value: %1 (%2). Color legend: '%3'" ) .arg( static_cast( faciesValues[i] ) ) .arg( faciesValues[i] ) .arg( colorLegend->colorLegendName() ) ); values.clear(); return false; } int idx = static_cast( formationValues[i] ); if ( std::isinf( formationValues[i] ) || idx < 0 || idx >= static_cast( formationNamesVector.size() ) ) { RiaLogging::error( QString( "Unknown formation found in elastic properties. Value: %1, tvd: %2" ).arg( formationValues[i] ).arg( tvDepthValues[i] ) ); values.clear(); return false; } QString formationName = formationNamesVector[idx]; double porosity = poroValues[i]; FaciesKey faciesKey = std::make_tuple( fieldName, formationName, faciesName ); if ( elasticProperties->hasPropertiesForFacies( faciesKey ) ) { if ( RimElasticProperties::isScalableProperty( curveProperty ) ) { const RigElasticProperties& rigElasticProperties = elasticProperties->propertiesForFacies( faciesKey ); double scale = elasticProperties->getPropertyScaling( formationName, faciesName, curveProperty ); auto [val, isExtrapolated] = rigElasticProperties.getValueForPorosity( curveProperty, porosity, scale ); if ( isExtrapolated ) { QString propertyName = caf::AppEnum( curveProperty ).uiText(); RiaLogging::error( QString( "Elastic property '%1' outside porosity range [%2, %3] for formation='%4', " "facies='%5', depth=%6, porosity=%7. Extrapolated value: %8" ) .arg( propertyName ) .arg( rigElasticProperties.porosityMin() ) .arg( rigElasticProperties.porosityMax() ) .arg( formationName ) .arg( faciesName ) .arg( tvDepthValues[i] ) .arg( porosity ) .arg( val ) ); } // if ( isScaledByNetToGross && !std::isinf( val ) ) { double netToGross = netToGrossValues[i]; if ( netToGross < netToGrossCutoff ) { FaciesKey ntgFaciesKey = std::make_tuple( "", formationName, netToGrossFaciesName ); const RigElasticProperties& rigNtgElasticProperties = elasticProperties->propertiesForFacies( ntgFaciesKey ); double ntgScale = elasticProperties->getPropertyScaling( formationName, netToGrossFaciesName, curveProperty ); auto [ntgValue, isExtrapolated] = rigNtgElasticProperties.getValueForPorosity( curveProperty, porosity, ntgScale ); val = val * netToGross + ( 1.0 - netToGross ) * ntgValue; if ( std::isinf( val ) || isExtrapolated ) { QString propertyName = caf::AppEnum( curveProperty ).uiText(); RiaLogging::error( QString( "Elastic property '%1' outside porosity range [%2, %3] for formation='%4', " "facies='%5', depth=%6, porosity=%7 (NTG). Extrapolated value: %8" ) .arg( propertyName ) .arg( rigNtgElasticProperties.porosityMin() ) .arg( rigNtgElasticProperties.porosityMax() ) .arg( formationName ) .arg( netToGrossFaciesName ) .arg( tvDepthValues[i] ) .arg( porosity ) .arg( val ) ); } } } values.push_back( val ); } else if ( stimPlanModel->hasDefaultValueForProperty( curveProperty ) ) { double val = stimPlanModel->getDefaultValueForProperty( curveProperty ); values.push_back( val ); } } else { RiaLogging::error( QString( "Missing elastic properties. Formation='%1', facies='%2'. Facies value: %3" ) .arg( formationName ) .arg( faciesName ) .arg( static_cast( faciesValues[i] ) ) ); values.clear(); return false; } } return true; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::pair RimStimPlanModelElasticPropertyCalculator::findFaciesName( const RimColorLegend& colorLegend, double value, const QString& defaultFaciesName ) { if ( std::isinf( value ) || std::isnan( value ) ) return { true, defaultFaciesName }; for ( auto item : colorLegend.colorLegendItems() ) { if ( item->categoryValue() == static_cast( value ) ) return { true, item->categoryName() }; } return { false, "not found" }; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimStimPlanModelElasticPropertyCalculator::addOverburden( std::vector& formationNames, std::vector& formationValues, std::vector& tvDepthValues, std::vector& measuredDepthValues, double overburdenHeight, const QString& formationName ) { if ( !tvDepthValues.empty() ) { // Prepend the new "fake" depth for start of overburden double tvdTop = tvDepthValues[0]; tvDepthValues.insert( tvDepthValues.begin(), tvdTop ); tvDepthValues.insert( tvDepthValues.begin(), tvdTop - overburdenHeight ); // TODO: this is not always correct double mdTop = measuredDepthValues[0]; measuredDepthValues.insert( measuredDepthValues.begin(), mdTop ); measuredDepthValues.insert( measuredDepthValues.begin(), mdTop - overburdenHeight ); formationNames.push_back( formationName ); formationValues.insert( formationValues.begin(), formationNames.size() - 1 ); formationValues.insert( formationValues.begin(), formationNames.size() - 1 ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimStimPlanModelElasticPropertyCalculator::addUnderburden( std::vector& formationNames, std::vector& formationValues, std::vector& tvDepthValues, std::vector& measuredDepthValues, double underburdenHeight, const QString& formationName ) { if ( !tvDepthValues.empty() ) { size_t lastIndex = tvDepthValues.size() - 1; double tvdBottom = tvDepthValues[lastIndex]; tvDepthValues.push_back( tvdBottom ); tvDepthValues.push_back( tvdBottom + underburdenHeight ); // TODO: this is not always correct double mdBottom = measuredDepthValues[lastIndex]; measuredDepthValues.push_back( mdBottom ); measuredDepthValues.push_back( mdBottom + underburdenHeight ); formationNames.push_back( formationName ); formationValues.push_back( formationNames.size() - 1 ); formationValues.push_back( formationNames.size() - 1 ); } }