///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 - Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RimFractureTemplate.h" #include "RiaFractureDefines.h" #include "RigTesselatorTools.h" #include "RimFracture.h" #include "RimFractureContainment.h" #include "RimProject.h" #include "cafPdmObject.h" #include "cafPdmUiDoubleSliderEditor.h" #include "cafPdmUiDoubleValueEditor.h" #include "cafPdmUiPushButtonEditor.h" #include "cafPdmUiTextEditor.h" #include "cvfVector3.h" #include // clang-format off namespace caf { template<> void caf::AppEnum< RimFractureTemplate::FracOrientationEnum>::setUp() { addItem(RimFractureTemplate::AZIMUTH, "Az", "Azimuth"); addItem(RimFractureTemplate::ALONG_WELL_PATH, "AlongWellPath", "Along Well Path"); addItem(RimFractureTemplate::TRANSVERSE_WELL_PATH, "TransverseWellPath", "Transverse (normal) to Well Path"); setDefault(RimFractureTemplate::TRANSVERSE_WELL_PATH); } template<> void caf::AppEnum< RimFractureTemplate::FracConductivityEnum>::setUp() { addItem(RimFractureTemplate::INFINITE_CONDUCTIVITY, "InfiniteConductivity", "Infinite Conductivity"); addItem(RimFractureTemplate::FINITE_CONDUCTIVITY, "FiniteConductivity", "Finite Conductivity"); setDefault(RimFractureTemplate::INFINITE_CONDUCTIVITY); } template<> void caf::AppEnum< RimFractureTemplate::PermeabilityEnum>::setUp() { addItem(RimFractureTemplate::USER_DEFINED_PERMEABILITY, "UserDefinedPermeability", "User Defined"); addItem(RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE, "FractureConductivity", "Use Fracture Conductivity"); setDefault(RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE); } template<> void caf::AppEnum::setUp() { addItem(RimFractureTemplate::USER_DEFINED_WIDTH, "UserDefinedWidth", "User Defined"); addItem(RimFractureTemplate::WIDTH_FROM_FRACTURE, "FractureWidth", "Use Fracture Width"); setDefault(RimFractureTemplate::WIDTH_FROM_FRACTURE); } template<> void caf::AppEnum::setUp() { addItem(RimFractureTemplate::NON_DARCY_NONE, "None", "None"); addItem(RimFractureTemplate::NON_DARCY_COMPUTED, "Computed", "Compute D-factor"); addItem(RimFractureTemplate::NON_DARCY_USER_DEFINED,"UserDefined", "User Defined D-factor"); setDefault(RimFractureTemplate::NON_DARCY_NONE); } template<> void caf::AppEnum< RimFractureTemplate::BetaFactorEnum>::setUp() { addItem(RimFractureTemplate::USER_DEFINED_BETA_FACTOR, "UserDefinedBetaFactor", "User Defined"); addItem(RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE, "FractureBetaFactor", "Use Fracture Beta Factor"); setDefault(RimFractureTemplate::USER_DEFINED_BETA_FACTOR); } } // TODO Move to cafPdmObject.h #define CAF_PDM_InitField_Basic(field, keyword, default, uiName) CAF_PDM_InitField(field, keyword, default, uiName, "", "", "") CAF_PDM_XML_ABSTRACT_SOURCE_INIT(RimFractureTemplate, "RimFractureTemplate"); //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::RimFractureTemplate() { CAF_PDM_InitObject("Fracture Template", ":/FractureTemplate16x16.png", "", ""); CAF_PDM_InitField(&m_id, "Id", -1, "ID", "", "", ""); m_id.uiCapability()->setUiReadOnly(true); CAF_PDM_InitField(&m_name, "UserDescription", QString("Fracture Template"), "Name", "", "", ""); CAF_PDM_InitFieldNoDefault(&m_nameAndUnit, "NameAndUnit", "NameAndUnit", "", "", ""); m_nameAndUnit.registerGetMethod(this, &RimFractureTemplate::nameAndUnit); m_nameAndUnit.uiCapability()->setUiHidden(true); m_nameAndUnit.xmlCapability()->disableIO(); CAF_PDM_InitField(&m_fractureTemplateUnit, "UnitSystem", caf::AppEnum(RiaEclipseUnitTools::UNITS_UNKNOWN), "Units System", "", "", ""); m_fractureTemplateUnit.uiCapability()->setUiReadOnly(true); CAF_PDM_InitField(&m_orientationType, "Orientation", caf::AppEnum(TRANSVERSE_WELL_PATH), "Fracture Orientation", "", "", ""); CAF_PDM_InitField(&m_azimuthAngle, "AzimuthAngle", 0.0f, "Azimuth Angle", "", "", ""); //Is this correct description? CAF_PDM_InitField(&m_skinFactor, "SkinFactor", 0.0f, "Skin Factor", "", "", ""); CAF_PDM_InitField(&m_perforationLength, "PerforationLength", 1.0, "Perforation Length", "", "", ""); CAF_PDM_InitField(&m_perforationEfficiency, "PerforationEfficiency", 1.0, "Perforation Efficiency", "", "", ""); m_perforationEfficiency.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleSliderEditor::uiEditorTypeName()); CAF_PDM_InitField(&m_wellDiameter, "WellDiameter", 0.216, "Well Diameter at Fracture", "", "", ""); CAF_PDM_InitField(&m_conductivityType, "ConductivityType", caf::AppEnum(FINITE_CONDUCTIVITY), "Conductivity in Fracture", "", "", ""); CAF_PDM_InitFieldNoDefault(&m_fractureContainment, "FractureContainmentField", "Fracture Containment", "", "", ""); m_fractureContainment = new RimFractureContainment(); m_fractureContainment.uiCapability()->setUiTreeHidden(true); m_fractureContainment.uiCapability()->setUiTreeChildrenHidden(true); // Non-Darcy Flow options CAF_PDM_InitFieldNoDefault(&m_nonDarcyFlowType, "NonDarcyFlowType", "Non-Darcy Flow", "", "", ""); CAF_PDM_InitField(&m_userDefinedDFactor, "UserDefinedDFactor", 1.0, "D Factor", "", "", ""); CAF_PDM_InitFieldNoDefault(&m_fractureWidthType, "FractureWidthType", "Type", "", "", ""); CAF_PDM_InitField_Basic(&m_fractureWidth, "FractureWidth", 0.01, "Fracture Width (h)"); CAF_PDM_InitFieldNoDefault(&m_betaFactorType, "BetaFactorType", "Type", "", "", ""); CAF_PDM_InitField_Basic(&m_inertialCoefficient, "InertialCoefficient", 0.006083236, "Inertial Coefficient (β) [Forch. unit]"); CAF_PDM_InitFieldNoDefault(&m_permeabilityType, "PermeabilityType", "Type", "", "", ""); CAF_PDM_InitField_Basic(&m_relativePermeability, "RelativePermeability", 1.0, "Relative Permeability"); CAF_PDM_InitField(&m_userDefinedEffectivePermeability, "EffectivePermeability",0.0, "Effective Permeability (Ke) [mD]", "", "", ""); CAF_PDM_InitField(&m_relativeGasDensity, "RelativeGasDensity", 0.8, "Relative Gas Density (γ)", "", "Relative density of gas at surface conditions with respect to air at STP", ""); CAF_PDM_InitField(&m_gasViscosity, "GasViscosity", 0.02, "Gas Viscosity (μ) [cP]", "", "Gas viscosity at bottom hole pressure", ""); CAF_PDM_InitFieldNoDefault(&m_dFactorDisplayField, "dFactorDisplayField", "D Factor", "", "", ""); m_dFactorDisplayField.registerGetMethod(this, &RimFractureTemplate::dFactorForTemplate); m_dFactorDisplayField.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleValueEditor::uiEditorTypeName()); m_dFactorDisplayField.uiCapability()->setUiReadOnly(true); m_dFactorDisplayField.xmlCapability()->disableIO(); CAF_PDM_InitFieldNoDefault(&m_dFactorSummaryText, "dFactorSummaryText", "D Factor Summary", "", "", ""); m_dFactorSummaryText.registerGetMethod(this, &RimFractureTemplate::dFactorSummary); m_dFactorSummaryText.uiCapability()->setUiReadOnly(true); m_dFactorSummaryText.uiCapability()->setUiEditorTypeName(caf::PdmUiTextEditor::uiEditorTypeName()); m_dFactorSummaryText.uiCapability()->setUiLabelPosition(caf::PdmUiItemInfo::LabelPosType::TOP); m_dFactorSummaryText.xmlCapability()->disableIO(); CAF_PDM_InitField(&m_heightScaleFactor, "HeightScaleFactor", 1.0, "Height", "", "", ""); CAF_PDM_InitField(&m_halfLengthScaleFactor, "WidthScaleFactor", 1.0, "Half Length", "", "", ""); CAF_PDM_InitField(&m_dFactorScaleFactor, "DFactorScaleFactor", 1.0, "D-factor", "", "", ""); CAF_PDM_InitField(&m_conductivityScaleFactor, "ConductivityFactor", 1.0, "Conductivity", "", "The conductivity values read from file will be scaled with this parameters", ""); CAF_PDM_InitField(&m_scaleApplyButton, "ScaleApplyButton", false, "Apply", "", "", ""); m_scaleApplyButton.xmlCapability()->disableIO(); m_scaleApplyButton.uiCapability()->setUiEditorTypeName(caf::PdmUiPushButtonEditor::uiEditorTypeName()); m_scaleApplyButton.uiCapability()->setUiLabelPosition(caf::PdmUiItemInfo::HIDDEN); } // clang-format on //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::~RimFractureTemplate() {} //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- int RimFractureTemplate::id() const { return m_id; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setName(const QString& name) { m_name = name; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setFractureTemplateUnit(RiaEclipseUnitTools::UnitSystemType unitSystem) { m_fractureTemplateUnit = unitSystem; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::name() const { return m_name; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::FracOrientationEnum RimFractureTemplate::orientationType() const { return m_orientationType(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RiaEclipseUnitTools::UnitSystemType RimFractureTemplate::fractureTemplateUnit() const { return m_fractureTemplateUnit(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- caf::PdmFieldHandle* RimFractureTemplate::userDescriptionField() { return &m_nameAndUnit; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::fieldChangedByUi(const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue) { bool createDisplayModelAndRedraw = false; if (changedField == &m_azimuthAngle || changedField == &m_orientationType) { for (RimFracture* fracture : fracturesUsingThisTemplate()) { if (changedField == &m_azimuthAngle && (fabs(oldValue.toDouble() - fracture->m_azimuth()) < 1e-5)) { fracture->m_azimuth = m_azimuthAngle; } if (changedField == &m_orientationType) { if (newValue == AZIMUTH) { fracture->m_azimuth = m_azimuthAngle; } else { fracture->updateAzimuthBasedOnWellAzimuthAngle(); } } createDisplayModelAndRedraw = true; } } if (changedField == &m_perforationLength || changedField == &m_perforationEfficiency || changedField == &m_wellDiameter) { for (RimFracture* fracture : fracturesUsingThisTemplate()) { if (changedField == &m_perforationLength && (fabs(oldValue.toDouble() - fracture->m_perforationLength()) < 1e-5)) { fracture->m_perforationLength = m_perforationLength; } if (changedField == &m_perforationEfficiency && (fabs(oldValue.toDouble() - fracture->m_perforationEfficiency()) < 1e-5)) { fracture->m_perforationEfficiency = m_perforationEfficiency; } if (changedField == &m_wellDiameter && (fabs(oldValue.toDouble() - fracture->m_wellDiameter()) < 1e-5)) { fracture->m_wellDiameter = m_wellDiameter; } } } for (RimFracture* fracture : fracturesUsingThisTemplate()) { fracture->clearCachedNonDarcyProperties(); } if (changedField == &m_perforationLength) { createDisplayModelAndRedraw = true; } if (createDisplayModelAndRedraw) { RimProject* proj; this->firstAncestorOrThisOfType(proj); if (proj) { proj->reloadCompletionTypeResultsInAllViews(); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::defineUiOrdering(QString uiConfigName, caf::PdmUiOrdering& uiOrdering) { prepareFieldsForUiDisplay(); { auto group = uiOrdering.addNewGroup("Sensitivity Scale Factors"); group->setCollapsedByDefault(true); group->add(&m_heightScaleFactor); group->add(&m_halfLengthScaleFactor); group->add(&m_dFactorScaleFactor); group->add(&m_conductivityScaleFactor); group->add(&m_scaleApplyButton); } auto nonDarcyFlowGroup = uiOrdering.addNewGroup("Non-Darcy Flow"); nonDarcyFlowGroup->add(&m_nonDarcyFlowType); if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED) { nonDarcyFlowGroup->add(&m_userDefinedDFactor); } if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_COMPUTED) { { auto group = nonDarcyFlowGroup->addNewGroup("Inertial Coefficient(β-factor)"); group->add(&m_betaFactorType); group->add(&m_inertialCoefficient); } { auto group = nonDarcyFlowGroup->addNewGroup("Effective Permeability"); group->add(&m_permeabilityType); group->add(&m_relativePermeability); group->add(&m_userDefinedEffectivePermeability); } { auto group = nonDarcyFlowGroup->addNewGroup("Width"); group->add(&m_fractureWidthType); group->add(&m_fractureWidth); } nonDarcyFlowGroup->add(&m_relativeGasDensity); nonDarcyFlowGroup->add(&m_gasViscosity); if (orientationType() != ALONG_WELL_PATH) { nonDarcyFlowGroup->add(&m_dFactorDisplayField); } { auto group = nonDarcyFlowGroup->addNewGroup("D Factor Details"); group->setCollapsedByDefault(true); group->add(&m_dFactorSummaryText); } } uiOrdering.add(&m_fractureTemplateUnit); uiOrdering.skipRemainingFields(true); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::defineEditorAttribute(const caf::PdmFieldHandle* field, QString uiConfigName, caf::PdmUiEditorAttribute* attribute) { if (field == &m_perforationEfficiency) { auto myAttr = dynamic_cast(attribute); if (myAttr) { myAttr->m_minimum = 0; myAttr->m_maximum = 1.0; } } if (field == &m_dFactorSummaryText) { auto myAttr = dynamic_cast(attribute); if (myAttr) { myAttr->wrapMode = caf::PdmUiTextEditorAttribute::NoWrap; QFont font("Monospace", 10); myAttr->font = font; myAttr->textMode = caf::PdmUiTextEditorAttribute::HTML; } } if (field == &m_scaleApplyButton) { caf::PdmUiPushButtonEditorAttribute* attrib = dynamic_cast(attribute); if (attrib) { attrib->m_buttonText = "Apply"; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::prepareFieldsForUiDisplay() { if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC) { m_wellDiameter.uiCapability()->setUiName("Well Diameter [m]"); m_perforationLength.uiCapability()->setUiName("Perforation Length [m]"); m_fractureWidth.uiCapability()->setUiName("Fracture Width [m]"); } else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD) { m_wellDiameter.uiCapability()->setUiName("Well Diameter [inches]"); m_perforationLength.uiCapability()->setUiName("Perforation Length [ft]"); m_fractureWidth.uiCapability()->setUiName("Fracture Width [ft]"); } if (m_orientationType == RimFractureTemplate::ALONG_WELL_PATH || m_orientationType == RimFractureTemplate::TRANSVERSE_WELL_PATH) { m_azimuthAngle.uiCapability()->setUiHidden(true); } else if (m_orientationType == RimFractureTemplate::AZIMUTH) { m_azimuthAngle.uiCapability()->setUiHidden(false); } if (m_orientationType == RimFractureTemplate::ALONG_WELL_PATH) { m_perforationEfficiency.uiCapability()->setUiHidden(false); m_perforationLength.uiCapability()->setUiHidden(false); } else { m_perforationEfficiency.uiCapability()->setUiHidden(true); m_perforationLength.uiCapability()->setUiHidden(true); } if (m_conductivityType == FINITE_CONDUCTIVITY) { m_wellDiameter.uiCapability()->setUiHidden(false); } else if (m_conductivityType == INFINITE_CONDUCTIVITY) { m_wellDiameter.uiCapability()->setUiHidden(true); } // Non Darcy Flow { if (m_fractureWidthType == RimFractureTemplate::USER_DEFINED_WIDTH) { m_fractureWidth.uiCapability()->setUiReadOnly(false); } else { m_fractureWidth.uiCapability()->setUiReadOnly(true); } if (m_betaFactorType == RimFractureTemplate::USER_DEFINED_BETA_FACTOR) { m_inertialCoefficient.uiCapability()->setUiReadOnly(false); } else { m_inertialCoefficient.uiCapability()->setUiReadOnly(true); } } if (m_permeabilityType == RimFractureTemplate::USER_DEFINED_PERMEABILITY) { m_relativePermeability.uiCapability()->setUiHidden(true); m_userDefinedEffectivePermeability.uiCapability()->setUiHidden(false); } else { m_relativePermeability.uiCapability()->setUiHidden(false); m_userDefinedEffectivePermeability.uiCapability()->setUiHidden(true); } } QString indentedText(const QString& text) { return QString(" %1\n").arg(text); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::dFactorSummary() const { QString text; std::vector fracturesToDisplay; { auto candidateFractures = fracturesUsingThisTemplate(); if (orientationType() != ALONG_WELL_PATH) { // D-factor values are identical for all fractures, only show summary for the first fracture if (!candidateFractures.empty()) { fracturesToDisplay.push_back(candidateFractures.front()); } } else { fracturesToDisplay = candidateFractures; } } for (auto f : fracturesToDisplay) { f->ensureValidNonDarcyProperties(); if (orientationType() == ALONG_WELL_PATH) { text += QString("Fracture name : %1").arg(f->name()); } text += "
";
        {
            auto val = f->nonDarcyProperties().dFactor;
            text += indentedText(QString("D-factor : %1").arg(val));

            auto alpha = RiaDefines::nonDarcyFlowAlpha(m_fractureTemplateUnit());
            text += indentedText(QString("α  : %1").arg(alpha));

            auto beta = getOrComputeBetaFactor(f);
            text += indentedText(QString("β  : %1").arg(beta));

            double effPerm = f->nonDarcyProperties().effectivePermeability;
            text += indentedText(QString("Ke : %1").arg(effPerm));

            double gamma = m_relativeGasDensity;
            text += indentedText(QString("γ  : %1").arg(gamma));

            auto h = f->nonDarcyProperties().width;
            text += indentedText(QString("h  : %1").arg(h));

            auto wellRadius = f->nonDarcyProperties().eqWellRadius;
            text += indentedText(QString("rw : %1").arg(wellRadius));

            auto mu = m_gasViscosity;
            text += indentedText(QString("μ  : %1").arg(mu));
        }
        text += "
"; text += "
"; } return text; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::dFactorForTemplate() const { if (orientationType() == ALONG_WELL_PATH) { return std::numeric_limits::infinity(); } return computeDFactor(nullptr); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeEffectivePermeability(const RimFracture* fractureInstance) const { if (m_permeabilityType() == RimFractureTemplate::USER_DEFINED_PERMEABILITY) { return m_userDefinedEffectivePermeability; } else { double fracPermeability = 0.0; auto values = wellFractureIntersectionData(fractureInstance); if (values.isWidthAndPermeabilityDefined()) { fracPermeability = values.m_permeability; } else { auto conductivity = values.m_conductivity; auto width = computeFractureWidth(fractureInstance); if (fabs(width) < 1e-10) return std::numeric_limits::infinity(); fracPermeability = conductivity / width; } return fracPermeability * m_relativePermeability; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeWellRadiusForDFactorCalculation(const RimFracture* fractureInstance) const { double radius = 0.0; if (m_orientationType == ALONG_WELL_PATH && fractureInstance) { auto perforationLength = fractureInstance->perforationLength(); radius = perforationLength / cvf::PI_D; } else { radius = m_wellDiameter / 2.0; } return radius; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeDFactor(const RimFracture* fractureInstance) const { double d; if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED) { d = m_userDefinedDFactor; } else { double radius = computeWellRadiusForDFactorCalculation(fractureInstance); double alpha = RiaDefines::nonDarcyFlowAlpha(m_fractureTemplateUnit()); double beta = getOrComputeBetaFactor(fractureInstance); double effPerm = computeEffectivePermeability(fractureInstance); double gamma = m_relativeGasDensity; double mu = m_gasViscosity; double h = computeFractureWidth(fractureInstance); double numerator = alpha * beta * effPerm * gamma; double denumerator = h * radius * mu; if (denumerator < 1e-10) return std::numeric_limits::infinity(); d = numerator / denumerator; if (m_orientationType == ALONG_WELL_PATH) { // Correction for linear inflow into the well // Dlinear = cgeometric * Dradial // Dlinear = 1.2 * Dradial d *= 1.2; } } return d * m_dFactorScaleFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeKh(const RimFracture* fractureInstance) const { // kh = permeability * h // conductivity = permeability * h auto values = wellFractureIntersectionData(fractureInstance); if (values.isConductivityDefined()) { // If conductivity is found in stim plan file, use this directly return values.m_conductivity; } return computeEffectivePermeability(fractureInstance) * computeFractureWidth(fractureInstance); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::convertToUnitSystem(RiaEclipseUnitTools::UnitSystem neededUnit) { if (neededUnit == RiaEclipseUnitTools::UNITS_METRIC) { m_perforationLength = RiaEclipseUnitTools::feetToMeter(m_perforationLength); m_wellDiameter = RiaEclipseUnitTools::inchToMeter(m_wellDiameter); m_fractureWidth = RiaEclipseUnitTools::feetToMeter(m_fractureWidth); } else if (neededUnit == RiaEclipseUnitTools::UNITS_FIELD) { m_perforationLength = RiaEclipseUnitTools::meterToFeet(m_perforationLength); m_wellDiameter = RiaEclipseUnitTools::meterToInch(m_wellDiameter); m_fractureWidth = RiaEclipseUnitTools::meterToFeet(m_fractureWidth); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::disconnectAllFracturesAndRedrawViews() const { // The unit has changed. Disconnect all fractures referencing this fracture template to avoid mix of units between fracture // and template for (auto fracture : fracturesUsingThisTemplate()) { if (fracture) { fracture->setFractureTemplate(nullptr); } } RimProject* proj; this->firstAncestorOrThisOfType(proj); if (proj) { proj->scheduleCreateDisplayModelAndRedrawAllViews(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setId(int id) { m_id = id; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setScaleFactors(double halfLengthScale, double heightScale, double dFactorScale, double conductivityScale) { m_halfLengthScaleFactor = halfLengthScale; m_heightScaleFactor = heightScale; m_dFactorScaleFactor = dFactorScale; m_conductivityScaleFactor = conductivityScale; for (RimFracture* fracture : fracturesUsingThisTemplate()) { fracture->clearCachedNonDarcyProperties(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::scaleFactors(double* halfLengthScale, double* heightScale, double* dFactorScale, double* conductivityScale) const { CVF_ASSERT(halfLengthScale && heightScale && dFactorScale && conductivityScale); *halfLengthScale = m_halfLengthScaleFactor; *heightScale = m_heightScaleFactor; *dFactorScale = m_dFactorScaleFactor; *conductivityScale = m_conductivityScaleFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setContainmentTopKLayer(int topKLayer) { m_fractureContainment->setTopKLayer(topKLayer); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setContainmentBaseKLayer(int baseKLayer) { m_fractureContainment->setBaseKLayer(baseKLayer); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeFractureWidth(const RimFracture* fractureInstance) const { if (m_fractureWidthType == RimFractureTemplate::WIDTH_FROM_FRACTURE) { auto values = wellFractureIntersectionData(fractureInstance); return values.m_width; } return m_fractureWidth; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::getOrComputeBetaFactor(const RimFracture* fractureInstance) const { if (m_betaFactorType == RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE) { auto values = wellFractureIntersectionData(fractureInstance); return values.m_betaFactorInForcheimerUnits; } return m_inertialCoefficient; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::loadDataAndUpdateGeometryHasChanged() { onLoadDataAndUpdateGeometryHasChanged(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RimFractureTemplate::fracturesUsingThisTemplate() const { std::vector fractures; this->objectsWithReferringPtrFieldsOfType(fractures); return fractures; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::isBetaFactorAvailableOnFile() const { return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::nameAndUnit() const { QString decoratedName; if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC) { decoratedName += "[M] - "; } else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD) { decoratedName += "[F] - "; } decoratedName += m_name; return decoratedName; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::wellDiameter() const { return m_wellDiameter; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::perforationLength() const { return m_perforationLength; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RimFractureContainment* RimFractureTemplate::fractureContainment() const { return m_fractureContainment(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::FracConductivityEnum RimFractureTemplate::conductivityType() const { return m_conductivityType(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- float RimFractureTemplate::azimuthAngle() const { return m_azimuthAngle; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- float RimFractureTemplate::skinFactor() const { return m_skinFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setDefaultWellDiameterFromUnit() { if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD) { m_wellDiameter = 8.5; } else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC) { m_wellDiameter = 0.216; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::isNonDarcyFlowEnabled() const { return m_nonDarcyFlowType() != RimFractureTemplate::NON_DARCY_NONE; }