///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFishbonesGeometry.h" #include "RimFishbonesMultipleSubs.h" #include "cvfAssert.h" #include "RimWellPath.h" #include "RigWellPath.h" #include "cvfMatrix4.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFisbonesGeometry::RigFisbonesGeometry(RimFishbonesMultipleSubs* fishbonesSub) : m_fishbonesSub(fishbonesSub) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RigFisbonesGeometry::coordsForLateral(size_t subIndex, size_t lateralIndex) const { CVF_ASSERT(lateralIndex < m_fishbonesSub->lateralLengths().size()); bool found = false; for (auto& sub : m_fishbonesSub->installedLateralIndices()) { if (sub.subIndex == subIndex) { auto it = std::find(sub.lateralIndices.begin(), sub.lateralIndices.end(), lateralIndex); if (it != sub.lateralIndices.end()) { found = true; break; } } } CVF_ASSERT(found); cvf::Vec3d position; cvf::Vec3d lateralInitialDirection; cvf::Mat4d buildAngleRotationMatrix; computeLateralPositionAndOrientation(subIndex, lateralIndex, &position, &lateralInitialDirection, &buildAngleRotationMatrix); return computeCoordsAlongLateral(m_fishbonesSub->measuredDepth(subIndex), m_fishbonesSub->lateralLengths()[lateralIndex], position, lateralInitialDirection, buildAngleRotationMatrix); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFisbonesGeometry::computeLateralPositionAndOrientation(size_t subIndex, size_t lateralIndex, cvf::Vec3d* startCoord, cvf::Vec3d* startDirection, cvf::Mat4d* buildAngleMatrix) const { RimWellPath* wellPath = nullptr; m_fishbonesSub->firstAncestorOrThisOfTypeAsserted(wellPath); RigWellPath* rigWellPath = wellPath->wellPathGeometry(); CVF_ASSERT(rigWellPath); double measuredDepth = m_fishbonesSub->measuredDepth(subIndex); cvf::Vec3d position = rigWellPath->interpolatedPointAlongWellPath(measuredDepth); cvf::Mat4d buildAngleMat; cvf::Vec3d lateralDirection; { cvf::Vec3d lateralInitialDirection = cvf::Vec3d::Z_AXIS; cvf::Vec3d p1 = cvf::Vec3d::UNDEFINED; cvf::Vec3d p2 = cvf::Vec3d::UNDEFINED; rigWellPath->twoClosestPoints(position, &p1, &p2); CVF_ASSERT(!p1.isUndefined() && !p2.isUndefined()); cvf::Vec3d alongWellPath = (p2 - p1).getNormalized(); if (RigFisbonesGeometry::closestMainAxis(alongWellPath) == cvf::Vec3d::Z_AXIS) { // Use Y-AXIS if well path is heading close to Z-AXIS lateralInitialDirection = cvf::Vec3d::Y_AXIS; } { double intialRotationAngle = m_fishbonesSub->rotationAngle(subIndex); double lateralOffsetDegrees = 360.0 / m_fishbonesSub->lateralLengths().size(); double lateralOffsetRadians = cvf::Math::toRadians(intialRotationAngle + lateralOffsetDegrees * lateralIndex); cvf::Mat4d lateralOffsetMatrix = cvf::Mat4d::fromRotation(alongWellPath, lateralOffsetRadians); lateralInitialDirection = lateralInitialDirection.getTransformedVector(lateralOffsetMatrix); } cvf::Vec3d rotationAxis; rotationAxis.cross(alongWellPath, lateralInitialDirection); double exitAngleRadians = cvf::Math::toRadians(m_fishbonesSub->exitAngle()); cvf::Mat4d lateralRotationMatrix = cvf::Mat4d::fromRotation(rotationAxis, exitAngleRadians); lateralDirection = alongWellPath.getTransformedVector(lateralRotationMatrix); double buildAngleRadians = cvf::Math::toRadians(m_fishbonesSub->buildAngle()); buildAngleMat = cvf::Mat4d::fromRotation(rotationAxis, buildAngleRadians); } *startCoord = position; *startDirection = lateralDirection; *buildAngleMatrix = buildAngleMat; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RigFisbonesGeometry::computeCoordsAlongLateral(double startMeasuredDepth, double lateralLength, const cvf::Vec3d& startCoord, const cvf::Vec3d& startDirection, const cvf::Mat4d& buildAngleMatrix) { std::vector> coords; cvf::Vec3d lateralDirection(startDirection); // Compute coordinates along the lateral by modifying the lateral direction by the build angle for // every unit vector along the lateral cvf::Vec3d accumulatedPosition = startCoord; double measuredDepth = startMeasuredDepth; double accumulatedLength = 0.0; while (accumulatedLength < lateralLength) { coords.push_back(std::make_pair(accumulatedPosition, measuredDepth)); double delta = 1.0; if (lateralLength - accumulatedLength < 1.0) { delta = lateralLength - accumulatedLength; } accumulatedPosition += delta * lateralDirection; // Modify the lateral direction by the build angle for each unit vector lateralDirection = lateralDirection.getTransformedVector(buildAngleMatrix); accumulatedLength += delta; measuredDepth += delta; } coords.push_back(std::make_pair(accumulatedPosition, measuredDepth)); return coords; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3d RigFisbonesGeometry::closestMainAxis(const cvf::Vec3d& vec) { size_t maxComponent = 0; double maxValue = cvf::Math::abs(vec.x()); if (cvf::Math::abs(vec.y()) > maxValue) { maxComponent = 1; maxValue = cvf::Math::abs(vec.y()); } if (cvf::Math::abs(vec.z()) > maxValue) { maxComponent = 2; maxValue = cvf::Math::abs(vec.z()); } if (maxComponent == 0) { return cvf::Vec3d::X_AXIS; } else if (maxComponent == 1) { return cvf::Vec3d::Y_AXIS; } else { return cvf::Vec3d::Z_AXIS; } }