///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // Copyright (C) Ceetron Solutions AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigSimulationWellCenterLineCalculator.h" #include "RimEclipseView.h" #include "RimEclipseWell.h" #include "RimEclipseWellCollection.h" #include "RimEclipseCase.h" #include "RigCaseData.h" #include "cvfRay.h" //-------------------------------------------------------------------------------------------------- /// Based on the points and cells, calculate a pipe centerline /// The returned CellIds is one less than the number of centerline points, /// and are describing the lines between the points, starting with the first line //-------------------------------------------------------------------------------------------------- void RigSimulationWellCenterLineCalculator::calculateWellPipeCenterline(RimEclipseWell* rimWell, std::vector< std::vector >& pipeBranchesCLCoords, std::vector< std::vector >& pipeBranchesCellIds) { bool isAutoDetectBranches = false; RigCaseData* eclipseCaseData = NULL; RigSingleWellResultsData* wellResults = NULL; { CVF_ASSERT(rimWell); RimEclipseView* eclipseView; rimWell->firstAncestorOrThisOfType(eclipseView); CVF_ASSERT(eclipseView); isAutoDetectBranches = eclipseView->wellCollection()->isAutoDetectingBranches(); eclipseCaseData = eclipseView->eclipseCase()->reservoirData(); wellResults = rimWell->wellResults(); } // Make sure we have computed the static representation of the well if (wellResults->m_staticWellCells.m_wellResultBranches.size() == 0) { wellResults->computeStaticWellCellPath(); } const RigWellResultFrame& staticWellFrame = wellResults->m_staticWellCells; if (staticWellFrame.m_wellResultBranches.size() == 0) return; // Initialize the return arrays pipeBranchesCLCoords.clear(); pipeBranchesCellIds.clear(); // Well head // Match this position with well head position in RivWellHeadPartMgr::buildWellHeadParts() const RigCell& whCell = eclipseCaseData->cellFromWellResultCell(staticWellFrame.m_wellHead); cvf::Vec3d whStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K); const RigWellResultPoint* whResCell = &(staticWellFrame.m_wellHead); // Loop over all the well branches const std::vector& resBranches = staticWellFrame.m_wellResultBranches; bool hasResultCells = false; if (resBranches.size()) { for (size_t i = 0 ; i < resBranches.size(); ++i) { if (resBranches[i].m_branchResultPoints.size() != 0) { hasResultCells = true; break; } } } if (hasResultCells) { // Add extra coordinate between cell face and cell center // to make sure the well pipe terminated in a segment parallel to z-axis cvf::Vec3d whIntermediate = whStartPos; whIntermediate.z() = (whStartPos.z() + whCell.center().z()) / 2.0; const RigWellResultPoint* prevWellResPoint = NULL; CVF_ASSERT(wellResults->isMultiSegmentWell() || resBranches.size() <= 1); // The centerline is calculated by adding a point when the pipe enters a cell, // and one when the line leaves the cell. // For the sake of the loop: // The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point to. // The previous cell is the one we leave, and calculate the "out-point" from for (size_t brIdx = 0; brIdx < resBranches.size(); brIdx++) { // Skip empty branches. Do not know why they exist, but they make problems. bool hasValidData = false; for (size_t cIdx = 0; cIdx < resBranches[brIdx].m_branchResultPoints.size(); ++cIdx) { if (resBranches[brIdx].m_branchResultPoints[cIdx].isValid()) { hasValidData = true; break; } } if (!hasValidData) continue; prevWellResPoint = NULL; // Find the start the MSW well-branch centerline. Normal wells are started "once" at wellhead in the code above pipeBranchesCLCoords.push_back(std::vector()); pipeBranchesCellIds.push_back(std::vector ()); if (brIdx == 0) { // The first branch contains segment number 1, and this is the only segment connected to well head // See Eclipse documentation for the keyword WELSEGS prevWellResPoint = whResCell; pipeBranchesCLCoords.back().push_back(whStartPos); pipeBranchesCellIds.back().push_back(*prevWellResPoint); pipeBranchesCLCoords.back().push_back(whIntermediate); pipeBranchesCellIds.back().push_back(*prevWellResPoint); } // Loop over all the resultPoints in the branch const std::vector& resBranchCells = resBranches[brIdx].m_branchResultPoints; for (int cIdx = 0; cIdx < static_cast(resBranchCells.size()); cIdx++) // Need int because cIdx can temporarily end on -1 { std::vector& branchCLCoords = pipeBranchesCLCoords.back(); std::vector& branchCellIds = pipeBranchesCellIds.back(); const RigWellResultPoint& currentWellResPoint = resBranchCells[cIdx]; // Ignore invalid cells if (!currentWellResPoint.isValid()) { //CVF_ASSERT(false); // Some segments does not get anything yet. continue; } // Add cl contribution for a geometrical resultPoint by adding exit point from previous cell, // and then the result point position if (!currentWellResPoint.isCell()) { // Use the interpolated value of branch head CVF_ASSERT(currentWellResPoint.isPointValid()); cvf::Vec3d currentPoint = currentWellResPoint.m_bottomPosition; // If we have a real previous cell, we need to go out of it, before adding the current point // That is: add a CL-point describing where it leaves the previous cell. if (prevWellResPoint && prevWellResPoint->isCell()) { // Create ray between the previous and this position const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint); cvf::Vec3d centerPreviousCell = prevCell.center(); cvf::Ray rayToThisCell; rayToThisCell.setOrigin(centerPreviousCell); rayToThisCell.setDirection((currentPoint - centerPreviousCell).getNormalized()); cvf::Vec3d outOfPrevCell(centerPreviousCell); int intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell); //CVF_ASSERT(intersectionOk); //CVF_ASSERT(intersectionOk); if ((currentPoint - outOfPrevCell).lengthSquared() > 1e-3) { branchCLCoords.push_back(outOfPrevCell); branchCellIds.push_back(RigWellResultPoint()); } } branchCLCoords.push_back(currentPoint); branchCellIds.push_back(currentWellResPoint); prevWellResPoint = ¤tWellResPoint; continue; } // // Handle currentWellResPoint as a real cell result points. // const RigCell& cell = eclipseCaseData->cellFromWellResultCell(currentWellResPoint); // Check if this and the previous cells has shared faces cvf::StructGridInterface::FaceType sharedFace; if (prevWellResPoint && prevWellResPoint->isCell() && eclipseCaseData->findSharedSourceFace(sharedFace, currentWellResPoint, *prevWellResPoint)) { // If they share faces, the shared face center is used as point // describing the entry of this cell. (And exit of the previous cell) branchCLCoords.push_back(cell.faceCenter(sharedFace)); branchCellIds.push_back(currentWellResPoint); } else { // This and the previous cell does not share a face. // Then we need to calculate the exit of the previous cell, and the entry point into this cell cvf::Vec3d centerPreviousCell(cvf::Vec3d::ZERO); cvf::Vec3d centerThisCell = cell.center(); bool distanceToWellHeadIsLonger = true; // If we have a previous well result point, use its center as measure point and ray intersection start // when considering things. if (prevWellResPoint && prevWellResPoint->isValid()) { if (prevWellResPoint->isCell()) { const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint); centerPreviousCell = prevCell.center(); } else { centerPreviousCell = prevWellResPoint->m_bottomPosition; } distanceToWellHeadIsLonger = (centerThisCell - centerPreviousCell).lengthSquared() <= (centerThisCell - whStartPos).lengthSquared(); } // First make sure this cell is not starting a new "display" branch for none MSW's if ( wellResults->isMultiSegmentWell() || !isAutoDetectBranches || (prevWellResPoint == whResCell) || distanceToWellHeadIsLonger) { // Not starting a "display" branch for normal wells // Calculate the exit of the previous cell, and the entry point into this cell cvf::Vec3d intoThisCell(centerThisCell); // Use cell center as default for "into" point. if (prevWellResPoint && prevWellResPoint->isValid()) { // We have a defined previous point // Create ray between the previous and this cell cvf::Ray rayToThisCell; rayToThisCell.setOrigin(centerPreviousCell); rayToThisCell.setDirection((centerThisCell - centerPreviousCell).getNormalized()); // Intersect with the current cell to find a better entry point than the cell center int intersectionCount = cell.firstIntersectionPoint(rayToThisCell, &intoThisCell); bool isPreviousResPointInsideCurrentCell = (intersectionCount % 2); // Must intersect uneven times to be inside. (1 % 2 = 1) // If we have a real previous cell, we need to go out of it, before entering this. // That is: add a CL-point describing where it leaves the previous cell. if ( prevWellResPoint->isCell()) { cvf::Vec3d outOfPrevCell(centerPreviousCell); const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint); bool intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell); //CVF_ASSERT(intersectionOk); //CVF_ASSERT(intersectionOk); if ((intoThisCell - outOfPrevCell).lengthSquared() > 1e-3) { branchCLCoords.push_back(outOfPrevCell); branchCellIds.push_back(RigWellResultPoint()); } } else if (isPreviousResPointInsideCurrentCell) { // Since the previous point actually is inside this cell, /// use that as the entry point into this cell intoThisCell = centerPreviousCell; } } branchCLCoords.push_back(intoThisCell); branchCellIds.push_back(currentWellResPoint); } else { // Need to start a "display branch" for a Normal Well. CVF_ASSERT(!wellResults->isMultiSegmentWell()); // This cell is further from the previous cell than from the well head, // thus we interpret it as a new branch. // First finish the current branch in the previous cell //branchCLCoords.push_back(branchCLCoords.back() + 1.5*(centerPreviousCell - branchCLCoords.back()) ); finishPipeCenterLine(pipeBranchesCLCoords, centerPreviousCell); // Create new display branch pipeBranchesCLCoords.push_back(std::vector()); pipeBranchesCellIds.push_back(std::vector ()); // Start the new branch by entering the first cell (the wellhead) and intermediate prevWellResPoint = whResCell; pipeBranchesCLCoords.back().push_back(whStartPos); pipeBranchesCellIds.back().push_back(*prevWellResPoint); // Include intermediate pipeBranchesCLCoords.back().push_back(whIntermediate); pipeBranchesCellIds.back().push_back(*prevWellResPoint); // Well now we need to step one back to take this cell again, but in the new branch. cIdx--; continue; } } prevWellResPoint = ¤tWellResPoint; } // For the last cell, add the point 0.5 past the center of that cell // Remember that prevWellResPoint actually is the last one in this branch. cvf::Vec3d centerLastCell; if (prevWellResPoint && prevWellResPoint->isCell()) { const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint); centerLastCell = prevCell.center(); finishPipeCenterLine(pipeBranchesCLCoords, centerLastCell); } else { // Remove the ID that is superfluous since we will not add an ending point pipeBranchesCellIds.back().pop_back(); } } } CVF_ASSERT(pipeBranchesCellIds.size() == pipeBranchesCLCoords.size()); for (size_t i = 0 ; i < pipeBranchesCellIds.size() ; ++i) { CVF_ASSERT(pipeBranchesCellIds[i].size() == pipeBranchesCLCoords[i].size()-1); } } //-------------------------------------------------------------------------------------------------- /// All branches are completed using the point 0.5 past the center of /// last cell. //-------------------------------------------------------------------------------------------------- void RigSimulationWellCenterLineCalculator::finishPipeCenterLine(std::vector< std::vector > &pipeBranchesCLCoords, const cvf::Vec3d& lastCellCenter) { CVF_ASSERT(pipeBranchesCLCoords.size()); CVF_ASSERT(pipeBranchesCLCoords.back().size()); cvf::Vec3d entryPointLastCell = pipeBranchesCLCoords.back().back(); pipeBranchesCLCoords.back().push_back(entryPointLastCell + 1.5*(lastCellCenter - entryPointLastCell) ); }