///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 - Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RimFractureTemplate.h" #include "RiaEclipseUnitTools.h" #include "RiaFractureDefines.h" #include "RigTesselatorTools.h" #include "RimFracture.h" #include "RimFractureContainment.h" #include "RimProject.h" #include "cafPdmFieldScriptingCapability.h" #include "cafPdmObject.h" #include "cafPdmObjectScriptingCapability.h" #include "cafPdmUiDoubleSliderEditor.h" #include "cafPdmUiDoubleValueEditor.h" #include "cafPdmUiPushButtonEditor.h" #include "cafPdmUiTextEditor.h" #include "cvfVector3.h" #include namespace caf { template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::AZIMUTH, "Azimuth", "Azimuth", QStringList( "Az" ) ); addItem( RimFractureTemplate::ALONG_WELL_PATH, "Longitudinal", "Along Well Path", QStringList( "AlongWellPath" ) ); addItem( RimFractureTemplate::TRANSVERSE_WELL_PATH, "Transverse", "Transverse (normal) to Well Path", QStringList( "TransverseWellPath" ) ); setDefault( RimFractureTemplate::TRANSVERSE_WELL_PATH ); } template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::INFINITE_CONDUCTIVITY, "InfiniteConductivity", "Infinite Conductivity" ); addItem( RimFractureTemplate::FINITE_CONDUCTIVITY, "FiniteConductivity", "Finite Conductivity" ); setDefault( RimFractureTemplate::INFINITE_CONDUCTIVITY ); } template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::USER_DEFINED_PERMEABILITY, "UserDefinedPermeability", "User Defined" ); addItem( RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE, "FractureConductivity", "Use Fracture Conductivity" ); setDefault( RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE ); } template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::USER_DEFINED_WIDTH, "UserDefinedWidth", "User Defined" ); addItem( RimFractureTemplate::WIDTH_FROM_FRACTURE, "FractureWidth", "Use Fracture Width" ); setDefault( RimFractureTemplate::WIDTH_FROM_FRACTURE ); } template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::NON_DARCY_NONE, "None", "None" ); addItem( RimFractureTemplate::NON_DARCY_COMPUTED, "Computed", "Compute D-factor" ); addItem( RimFractureTemplate::NON_DARCY_USER_DEFINED, "UserDefined", "User Defined D-factor" ); setDefault( RimFractureTemplate::NON_DARCY_NONE ); } template <> void caf::AppEnum::setUp() { addItem( RimFractureTemplate::USER_DEFINED_BETA_FACTOR, "UserDefinedBetaFactor", "User Defined" ); addItem( RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE, "FractureBetaFactor", "Use Fracture Beta Factor" ); setDefault( RimFractureTemplate::USER_DEFINED_BETA_FACTOR ); } } // namespace caf CAF_PDM_XML_ABSTRACT_SOURCE_INIT( RimFractureTemplate, "FractureTemplate", "RimFractureTemplate" ); //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::RimFractureTemplate() : wellPathDepthAtFractureChanged( this ) { CAF_PDM_InitScriptableObject( "Fracture Template", ":/FractureTemplate16x16.png" ); CAF_PDM_InitField( &m_id, "Id", -1, "ID" ); m_id.uiCapability()->setUiReadOnly( true ); CAF_PDM_InitScriptableField( &m_name, "UserDescription", QString( "Fracture Template" ), "Name" ); CAF_PDM_InitFieldNoDefault( &m_nameAndUnit, "NameAndUnit", "NameAndUnit" ); m_nameAndUnit.registerGetMethod( this, &RimFractureTemplate::nameAndUnit ); m_nameAndUnit.uiCapability()->setUiHidden( true ); m_nameAndUnit.xmlCapability()->disableIO(); CAF_PDM_InitField( &m_fractureTemplateUnit, "UnitSystem", caf::AppEnum( RiaDefines::EclipseUnitSystem::UNITS_UNKNOWN ), "Units System" ); m_fractureTemplateUnit.uiCapability()->setUiReadOnly( true ); CAF_PDM_InitScriptableField( &m_orientationType, "Orientation", caf::AppEnum( TRANSVERSE_WELL_PATH ), "Fracture Orientation" ); CAF_PDM_InitScriptableField( &m_userDefinedPerforationLength, "UserDefinedPerforationLength", false, "User-defined Perforation Length" ); CAF_PDM_InitScriptableField( &m_azimuthAngle, "AzimuthAngle", 0.0f, "Azimuth Angle" ); CAF_PDM_InitField( &m_skinFactor, "SkinFactor", 0.0f, "Skin Factor" ); CAF_PDM_InitScriptableField( &m_perforationLength, "PerforationLength", 1.0, "Perforation Length" ); CAF_PDM_InitField( &m_perforationEfficiency, "PerforationEfficiency", 1.0, "Perforation Efficiency" ); m_perforationEfficiency.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleSliderEditor::uiEditorTypeName() ); CAF_PDM_InitField( &m_wellDiameter, "WellDiameter", 0.216, "Well Diameter at Fracture" ); CAF_PDM_InitScriptableField( &m_conductivityType, "ConductivityType", caf::AppEnum( FINITE_CONDUCTIVITY ), "Conductivity in Fracture" ); CAF_PDM_InitField( &m_wellPathDepthAtFracture, "WellPathDepthAtFracture", 0.0, "Well/Fracture Intersection Depth" ); m_wellPathDepthAtFracture.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleSliderEditor::uiEditorTypeName() ); CAF_PDM_InitFieldNoDefault( &m_fractureContainment, "FractureContainmentField", "Fracture Containment" ); m_fractureContainment = new RimFractureContainment(); m_fractureContainment.uiCapability()->setUiTreeHidden( true ); m_fractureContainment.uiCapability()->setUiTreeChildrenHidden( true ); // Non-Darcy Flow options CAF_PDM_InitFieldNoDefault( &m_nonDarcyFlowType, "NonDarcyFlowType", "Non-Darcy Flow" ); CAF_PDM_InitField( &m_userDefinedDFactor, "UserDefinedDFactor", 1.0, "D Factor" ); CAF_PDM_InitFieldNoDefault( &m_fractureWidthType, "FractureWidthType", "Type" ); CAF_PDM_InitField( &m_fractureWidth, "FractureWidth", 0.01, "Fracture Width (h)" ); CAF_PDM_InitFieldNoDefault( &m_betaFactorType, "BetaFactorType", "Type" ); CAF_PDM_InitField( &m_inertialCoefficient, "InertialCoefficient", 0.006083236, "Inertial Coefficient (β) [Forch. unit]" ); CAF_PDM_InitFieldNoDefault( &m_permeabilityType, "PermeabilityType", "Type" ); CAF_PDM_InitField( &m_relativePermeability, "RelativePermeability", 1.0, "Relative Permeability" ); CAF_PDM_InitField( &m_userDefinedEffectivePermeability, "EffectivePermeability", 0.0, "Effective Permeability (Ke) [mD]" ); CAF_PDM_InitField( &m_relativeGasDensity, "RelativeGasDensity", 0.8, "Relative Gas Density (γ)", "", "Relative density of gas at surface conditions with respect to air at STP", "" ); CAF_PDM_InitField( &m_gasViscosity, "GasViscosity", 0.02, "Gas Viscosity (μ) [cP]", "", "Gas viscosity at bottom hole pressure", "" ); CAF_PDM_InitFieldNoDefault( &m_dFactorDisplayField, "dFactorDisplayField", "D Factor" ); m_dFactorDisplayField.registerGetMethod( this, &RimFractureTemplate::dFactorForTemplate ); m_dFactorDisplayField.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleValueEditor::uiEditorTypeName() ); m_dFactorDisplayField.uiCapability()->setUiReadOnly( true ); m_dFactorDisplayField.xmlCapability()->disableIO(); CAF_PDM_InitFieldNoDefault( &m_dFactorSummaryText, "dFactorSummaryText", "D Factor Summary" ); m_dFactorSummaryText.registerGetMethod( this, &RimFractureTemplate::dFactorSummary ); m_dFactorSummaryText.uiCapability()->setUiReadOnly( true ); m_dFactorSummaryText.uiCapability()->setUiEditorTypeName( caf::PdmUiTextEditor::uiEditorTypeName() ); m_dFactorSummaryText.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::LabelPosType::TOP ); m_dFactorSummaryText.xmlCapability()->disableIO(); CAF_PDM_InitScriptableField( &m_heightScaleFactor, "HeightScaleFactor", 1.0, "Height" ); CAF_PDM_InitScriptableField( &m_halfLengthScaleFactor, "WidthScaleFactor", 1.0, "Half Length" ); CAF_PDM_InitScriptableField( &m_dFactorScaleFactor, "DFactorScaleFactor", 1.0, "D-factor" ); CAF_PDM_InitScriptableField( &m_conductivityScaleFactor, "ConductivityFactor", 1.0, "Conductivity", "", "The conductivity values read from file will be scaled with this parameters", "" ); CAF_PDM_InitField( &m_scaleApplyButton, "ScaleApplyButton", false, "Apply" ); m_scaleApplyButton.xmlCapability()->disableIO(); m_scaleApplyButton.uiCapability()->setUiEditorTypeName( caf::PdmUiPushButtonEditor::uiEditorTypeName() ); m_scaleApplyButton.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::~RimFractureTemplate() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- int RimFractureTemplate::id() const { return m_id; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setName( const QString& name ) { m_name = name; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setUnitSystem( caf::AppEnum unitSystem ) { m_fractureTemplateUnit = unitSystem; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::name() const { return m_name; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::FracOrientationEnum RimFractureTemplate::orientationType() const { return m_orientationType(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- caf::AppEnum RimFractureTemplate::fractureTemplateUnit() const { return m_fractureTemplateUnit(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- caf::PdmFieldHandle* RimFractureTemplate::userDescriptionField() { return &m_nameAndUnit; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::fieldChangedByUi( const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue ) { bool updateCompletionTypeResults = false; if ( changedField == &m_azimuthAngle || changedField == &m_orientationType ) { for ( RimFracture* fracture : fracturesUsingThisTemplate() ) { if ( changedField == &m_azimuthAngle && ( fabs( oldValue.toDouble() - fracture->m_azimuth() ) < 1e-5 ) ) { fracture->m_azimuth = m_azimuthAngle; } if ( changedField == &m_orientationType ) { if ( newValue == AZIMUTH ) { fracture->m_azimuth = m_azimuthAngle; } else { fracture->updateAzimuthBasedOnWellAzimuthAngle(); } } updateCompletionTypeResults = true; } } if ( changedField == &m_perforationLength || changedField == &m_perforationEfficiency || changedField == &m_wellDiameter ) { for ( RimFracture* fracture : fracturesUsingThisTemplate() ) { if ( changedField == &m_perforationLength && ( fabs( oldValue.toDouble() - fracture->m_perforationLength() ) < 1e-5 ) ) { fracture->m_perforationLength = m_perforationLength; } if ( changedField == &m_perforationEfficiency && ( fabs( oldValue.toDouble() - fracture->m_perforationEfficiency() ) < 1e-5 ) ) { fracture->m_perforationEfficiency = m_perforationEfficiency; } if ( changedField == &m_wellDiameter && ( fabs( oldValue.toDouble() - fracture->m_wellDiameter() ) < 1e-5 ) ) { fracture->m_wellDiameter = m_wellDiameter; } } } if ( changedField == &m_wellPathDepthAtFracture ) { wellPathDepthAtFractureChanged.send( newValue.toDouble() ); } for ( RimFracture* fracture : fracturesUsingThisTemplate() ) { fracture->clearCachedNonDarcyProperties(); } if ( changedField == &m_perforationLength || changedField == &m_conductivityType || changedField == &m_userDefinedPerforationLength ) { updateCompletionTypeResults = true; } if ( updateCompletionTypeResults ) { RimProject::current()->reloadCompletionTypeResultsInAllViews(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering ) { prepareFieldsForUiDisplay(); { auto group = uiOrdering.addNewGroup( "Sensitivity Scale Factors" ); group->setCollapsedByDefault(); group->add( &m_heightScaleFactor ); group->add( &m_halfLengthScaleFactor ); group->add( &m_dFactorScaleFactor ); group->add( &m_conductivityScaleFactor ); group->add( &m_scaleApplyButton ); } auto nonDarcyFlowGroup = uiOrdering.addNewGroup( "Non-Darcy Flow" ); nonDarcyFlowGroup->add( &m_nonDarcyFlowType ); if ( m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED ) { nonDarcyFlowGroup->add( &m_userDefinedDFactor ); } if ( m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_COMPUTED ) { { auto group = nonDarcyFlowGroup->addNewGroup( "Inertial Coefficient(β-factor)" ); group->add( &m_betaFactorType ); group->add( &m_inertialCoefficient ); } { auto group = nonDarcyFlowGroup->addNewGroup( "Effective Permeability" ); group->add( &m_permeabilityType ); group->add( &m_relativePermeability ); group->add( &m_userDefinedEffectivePermeability ); } { auto group = nonDarcyFlowGroup->addNewGroup( "Width" ); group->add( &m_fractureWidthType ); group->add( &m_fractureWidth ); } nonDarcyFlowGroup->add( &m_relativeGasDensity ); nonDarcyFlowGroup->add( &m_gasViscosity ); if ( orientationType() != ALONG_WELL_PATH ) { nonDarcyFlowGroup->add( &m_dFactorDisplayField ); } { auto group = nonDarcyFlowGroup->addNewGroup( "D Factor Details" ); group->setCollapsedByDefault(); group->add( &m_dFactorSummaryText ); } } uiOrdering.add( &m_fractureTemplateUnit ); uiOrdering.skipRemainingFields( true ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::defineEditorAttribute( const caf::PdmFieldHandle* field, QString uiConfigName, caf::PdmUiEditorAttribute* attribute ) { if ( field == &m_perforationEfficiency ) { auto myAttr = dynamic_cast( attribute ); if ( myAttr ) { myAttr->m_minimum = 0; myAttr->m_maximum = 1.0; } } if ( field == &m_dFactorSummaryText ) { auto myAttr = dynamic_cast( attribute ); if ( myAttr ) { myAttr->wrapMode = caf::PdmUiTextEditorAttribute::NoWrap; QFont font( "Monospace", 10 ); myAttr->font = font; myAttr->textMode = caf::PdmUiTextEditorAttribute::HTML; } } if ( field == &m_scaleApplyButton ) { auto* attrib = dynamic_cast( attribute ); if ( attrib ) { attrib->m_buttonText = "Apply"; } } if ( field == &m_wellPathDepthAtFracture ) { auto* myAttr = dynamic_cast( attribute ); if ( myAttr ) { auto [minimum, maximum] = wellPathDepthAtFractureRange(); myAttr->m_minimum = minimum; myAttr->m_maximum = maximum; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::prepareFieldsForUiDisplay() { if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_METRIC ) { m_wellDiameter.uiCapability()->setUiName( "Well Diameter [m]" ); m_perforationLength.uiCapability()->setUiName( "Perforation Length [m]" ); m_fractureWidth.uiCapability()->setUiName( "Fracture Width [m]" ); } else if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_FIELD ) { m_wellDiameter.uiCapability()->setUiName( "Well Diameter [inches]" ); m_perforationLength.uiCapability()->setUiName( "Perforation Length [ft]" ); m_fractureWidth.uiCapability()->setUiName( "Fracture Width [ft]" ); } if ( m_orientationType == RimFractureTemplate::ALONG_WELL_PATH || m_orientationType == RimFractureTemplate::TRANSVERSE_WELL_PATH ) { m_azimuthAngle.uiCapability()->setUiHidden( true ); m_userDefinedPerforationLength.uiCapability()->setUiHidden( true ); } else if ( m_orientationType == RimFractureTemplate::AZIMUTH ) { m_azimuthAngle.uiCapability()->setUiHidden( false ); m_userDefinedPerforationLength.uiCapability()->setUiHidden( false ); } if ( m_orientationType == RimFractureTemplate::ALONG_WELL_PATH ) { m_perforationEfficiency.uiCapability()->setUiHidden( false ); m_perforationLength.uiCapability()->setUiHidden( false ); } else { m_perforationEfficiency.uiCapability()->setUiHidden( true ); bool hidePerforationLength = !( m_orientationType == RimFractureTemplate::AZIMUTH && m_userDefinedPerforationLength() ); m_perforationLength.uiCapability()->setUiHidden( hidePerforationLength ); } if ( m_conductivityType == FINITE_CONDUCTIVITY ) { m_wellDiameter.uiCapability()->setUiHidden( false ); } else if ( m_conductivityType == INFINITE_CONDUCTIVITY ) { m_wellDiameter.uiCapability()->setUiHidden( true ); } // Non Darcy Flow { if ( m_fractureWidthType == RimFractureTemplate::USER_DEFINED_WIDTH ) { m_fractureWidth.uiCapability()->setUiReadOnly( false ); } else { m_fractureWidth.uiCapability()->setUiReadOnly( true ); } if ( m_betaFactorType == RimFractureTemplate::USER_DEFINED_BETA_FACTOR ) { m_inertialCoefficient.uiCapability()->setUiReadOnly( false ); } else { m_inertialCoefficient.uiCapability()->setUiReadOnly( true ); } } if ( m_permeabilityType == RimFractureTemplate::USER_DEFINED_PERMEABILITY ) { m_relativePermeability.uiCapability()->setUiHidden( true ); m_userDefinedEffectivePermeability.uiCapability()->setUiHidden( false ); } else { m_relativePermeability.uiCapability()->setUiHidden( false ); m_userDefinedEffectivePermeability.uiCapability()->setUiHidden( true ); } } QString indentedText( const QString& text ) { return QString( " %1\n" ).arg( text ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::dFactorSummary() const { QString text; std::vector fracturesToDisplay; { auto candidateFractures = fracturesUsingThisTemplate(); if ( orientationType() != ALONG_WELL_PATH ) { // D-factor values are identical for all fractures, only show summary for the first fracture if ( !candidateFractures.empty() ) { fracturesToDisplay.push_back( candidateFractures.front() ); } } else { fracturesToDisplay = candidateFractures; } } for ( auto f : fracturesToDisplay ) { f->ensureValidNonDarcyProperties(); if ( orientationType() == ALONG_WELL_PATH ) { text += QString( "Fracture name : %1" ).arg( f->name() ); } text += "
";
        {
            auto val = f->nonDarcyProperties().dFactor;
            text += indentedText( QString( "D-factor : %1" ).arg( val ) );

            auto alpha = RiaDefines::nonDarcyFlowAlpha( m_fractureTemplateUnit() );
            text += indentedText( QString( "α  : %1" ).arg( alpha ) );

            auto beta = getOrComputeBetaFactor( f );
            text += indentedText( QString( "β  : %1" ).arg( beta ) );

            double effPerm = f->nonDarcyProperties().effectivePermeability;
            text += indentedText( QString( "Ke : %1" ).arg( effPerm ) );

            double gamma = m_relativeGasDensity;
            text += indentedText( QString( "γ  : %1" ).arg( gamma ) );

            auto h = f->nonDarcyProperties().width;
            text += indentedText( QString( "h  : %1" ).arg( h ) );

            auto wellRadius = f->nonDarcyProperties().eqWellRadius;
            text += indentedText( QString( "rw : %1" ).arg( wellRadius ) );

            auto mu = m_gasViscosity;
            text += indentedText( QString( "μ  : %1" ).arg( mu ) );
        }
        text += "
"; text += "
"; } return text; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::dFactorForTemplate() const { if ( orientationType() == ALONG_WELL_PATH ) { return std::numeric_limits::infinity(); } return computeDFactor( nullptr ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeEffectivePermeability( const RimFracture* fractureInstance ) const { if ( m_permeabilityType() == RimFractureTemplate::USER_DEFINED_PERMEABILITY ) { return m_userDefinedEffectivePermeability; } double fracPermeability = 0.0; auto values = wellFractureIntersectionData( fractureInstance ); if ( values.isWidthAndPermeabilityDefined() ) { fracPermeability = values.m_permeability; } else { auto conductivity = values.m_conductivity; auto width = computeFractureWidth( fractureInstance ); if ( fabs( width ) < 1e-10 ) return std::numeric_limits::infinity(); fracPermeability = conductivity / width; } return fracPermeability * m_relativePermeability; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeWellRadiusForDFactorCalculation( const RimFracture* fractureInstance ) const { double radius = 0.0; if ( m_orientationType == ALONG_WELL_PATH && fractureInstance ) { auto perforationLength = fractureInstance->perforationLength(); radius = perforationLength / cvf::PI_D; } else { radius = m_wellDiameter / 2.0; } return radius; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeDFactor( const RimFracture* fractureInstance ) const { double d; if ( m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED ) { d = m_userDefinedDFactor; } else { double radius = computeWellRadiusForDFactorCalculation( fractureInstance ); double alpha = RiaDefines::nonDarcyFlowAlpha( m_fractureTemplateUnit() ); double beta = getOrComputeBetaFactor( fractureInstance ); double effPerm = computeEffectivePermeability( fractureInstance ); double gamma = m_relativeGasDensity; double mu = m_gasViscosity; double h = computeFractureWidth( fractureInstance ); double numerator = alpha * beta * effPerm * gamma; double denumerator = h * radius * mu; if ( denumerator < 1e-10 ) return std::numeric_limits::infinity(); d = numerator / denumerator; if ( m_orientationType == ALONG_WELL_PATH ) { // Correction for linear inflow into the well // Dlinear = cgeometric * Dradial // Dlinear = 1.2 * Dradial d *= 1.2; } } return d * m_dFactorScaleFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeKh( const RimFracture* fractureInstance ) const { // kh = permeability * h // conductivity = permeability * h auto values = wellFractureIntersectionData( fractureInstance ); if ( values.isConductivityDefined() ) { // If conductivity is found in stim plan file, use this directly return values.m_conductivity; } return computeEffectivePermeability( fractureInstance ) * computeFractureWidth( fractureInstance ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::convertToUnitSystem( RiaDefines::EclipseUnitSystem neededUnit ) { if ( neededUnit == RiaDefines::EclipseUnitSystem::UNITS_METRIC ) { m_perforationLength = RiaEclipseUnitTools::feetToMeter( m_perforationLength ); m_wellDiameter = RiaEclipseUnitTools::inchToMeter( m_wellDiameter ); m_fractureWidth = RiaEclipseUnitTools::feetToMeter( m_fractureWidth ); } else if ( neededUnit == RiaDefines::EclipseUnitSystem::UNITS_FIELD ) { m_perforationLength = RiaEclipseUnitTools::meterToFeet( m_perforationLength ); m_wellDiameter = RiaEclipseUnitTools::meterToInch( m_wellDiameter ); m_fractureWidth = RiaEclipseUnitTools::meterToFeet( m_fractureWidth ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::disconnectAllFracturesAndRedrawViews() const { // The unit has changed. Disconnect all fractures referencing this fracture template to avoid mix of units between // fracture and template for ( auto fracture : fracturesUsingThisTemplate() ) { if ( fracture ) { fracture->setFractureTemplate( nullptr ); } } RimProject::current()->scheduleCreateDisplayModelAndRedrawAllViews(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setId( int id ) { m_id = id; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setScaleFactors( double halfLengthScale, double heightScale, double dFactorScale, double conductivityScale ) { m_halfLengthScaleFactor = halfLengthScale; m_heightScaleFactor = heightScale; m_dFactorScaleFactor = dFactorScale; m_conductivityScaleFactor = conductivityScale; for ( RimFracture* fracture : fracturesUsingThisTemplate() ) { fracture->clearCachedNonDarcyProperties(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::scaleFactors( double* halfLengthScale, double* heightScale, double* dFactorScale, double* conductivityScale ) const { CVF_ASSERT( halfLengthScale && heightScale && dFactorScale && conductivityScale ); *halfLengthScale = m_halfLengthScaleFactor; *heightScale = m_heightScaleFactor; *dFactorScale = m_dFactorScaleFactor; *conductivityScale = m_conductivityScaleFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setContainmentTopKLayer( int topKLayer ) { m_fractureContainment->setTopKLayer( topKLayer ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setContainmentBaseKLayer( int baseKLayer ) { m_fractureContainment->setBaseKLayer( baseKLayer ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::computeFractureWidth( const RimFracture* fractureInstance ) const { if ( m_fractureWidthType == RimFractureTemplate::WIDTH_FROM_FRACTURE ) { auto values = wellFractureIntersectionData( fractureInstance ); return values.m_width; } return m_fractureWidth; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::getOrComputeBetaFactor( const RimFracture* fractureInstance ) const { if ( m_betaFactorType == RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE ) { auto values = wellFractureIntersectionData( fractureInstance ); return values.m_betaFactorInForcheimerUnits; } return m_inertialCoefficient; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::loadDataAndUpdateGeometryHasChanged() { onLoadDataAndUpdateGeometryHasChanged(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RimFractureTemplate::fracturesUsingThisTemplate() const { return objectsWithReferringPtrFieldsOfType(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::isBetaFactorAvailableOnFile() const { return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimFractureTemplate::nameAndUnit() const { QString decoratedName; if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_METRIC ) { decoratedName += "[M] - "; } else if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_FIELD ) { decoratedName += "[F] - "; } decoratedName += m_name; return decoratedName; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::wellDiameter() const { return m_wellDiameter; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::perforationLength() const { return m_perforationLength; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::useUserDefinedPerforationLength() const { return m_userDefinedPerforationLength; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RimFractureContainment* RimFractureTemplate::fractureContainment() const { return m_fractureContainment(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimFractureTemplate::FracConductivityEnum RimFractureTemplate::conductivityType() const { return m_conductivityType(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- float RimFractureTemplate::azimuthAngle() const { return m_azimuthAngle; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- float RimFractureTemplate::skinFactor() const { return m_skinFactor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimFractureTemplate::setDefaultWellDiameterFromUnit() { if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_FIELD ) { m_wellDiameter = 8.5; } else if ( m_fractureTemplateUnit == RiaDefines::EclipseUnitSystem::UNITS_METRIC ) { m_wellDiameter = 0.216; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::isNonDarcyFlowEnabled() const { return m_nonDarcyFlowType() != RimFractureTemplate::NON_DARCY_NONE; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimFractureTemplate::wellPathDepthAtFracture() const { return m_wellPathDepthAtFracture; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimFractureTemplate::placeFractureUsingTemplateData( RimFracture* fracture ) { return true; }